

SOFTWARE COMMUNICATIONS ARCHITECTURE
SPECIFICATION

FINAL / 15 May 2006

Version 2.2.2

Prepared by:

JTRS Standards
Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)

Space and Naval Warfare Systems Center San Diego
53560 Hull Street, San Diego CA 92152-5001

Distribution Unlimited

SCA version 2.2.2 FINAL / 15 May 2006

REVISION SUMMARY

Version Revisions

1.0 Formal release for initial validation.

1.1 Incorporate approved Change Proposals, numbers 97, 99, 110, 160, 161, 162, 164, 171,
177, 178, 179, 180, 193, 195, 201, 204, 205, 208, 209, 211, 216.

2.0 Incorporate approved Change Proposals, numbers 39, 105, 119, 147, 175, 186, 191, 192,
210, 217, 218, 219, 220, 222, 223, 225, 226, 227, 229, 231, 232, 235, 237, 240, 243, 249,
255, 258, 266, 270, 275, 276, 277, 278, 282, 283, 285, 299, 307, 308, 310, 311, 332, 335,
336, 337, 341, 342, 343, 344, 345.

2.1 Incorporate approved Change Proposals, numbers 88, 102, 142, 306, 316, 353, 357, 358,
359, 360, 365, 366, 367, 369, 370, 371, 372, 373, 419, 468, 471, 472, 473, 475, 476, 477

2.2 Incorporate approved Change Proposals, numbers 138, 250, 279, 338, 388, 466, 486, 487,
488, 495, 497, 504, 508, 509, 513, 514, 515, 517

2.2.1 Incorporate approved Change Proposals, SCA-CCM* numbers 1, 4, 5, 13, 15, 20, 23, 26,
28, 29, 30, 44, 70, 74, 78, 77, 100, 102, 107,

2.2.2 Incorporate approved Change Proposals:
SCA-CCM 001, 004, 005, 013, 015, 020, 022, 023, 024, 025, 026, 027, 028, 029, 030, 044,
070, 074, 077, 078, 083, 084, 087, 091, 095, 097, 100, 102, 104, 107, 108, 118, 120, 121,
122, 123, 124, 125, 134, 137, 140, 141, 142, 145, 149, 152, 153, 178, 182, 188, 189, 190,
194, 202, 234, 264, 273, 276, 283, 284, 299, 303, 307, 308, 309, 313, 314, 316, 318, 319,
320, 321, 323, 324, 325

* The numbering scheme for change proposals was changed for version 2.2.1.

SCA version 2.2.2 FINAL / 15 May 2006

TABLE OF CONTENTS

1 INTRODUCTION...1-1

1.1 Scope..1-1

1.2 Compliance ...1-2

1.3 Document conventions, Terminology, and Definitions...1-2
1.3.1 Conventions and Terminology...1-2

1.3.1.1 File and Directory Nomenclature..1-2

1.3.1.2 Unified Modeling Language ...1-2

1.3.1.3 Interface Definition Language ..1-2

1.3.1.4 eXtensible Markup Language ...1-2

1.3.1.5 Requirements Language..1-3

1.3.1.6 Core Framework Interface and Operation Identification..1-3

1.3.1.7 Figures...1-3

1.3.2 Definitions..1-3

1.4 Document Content ...1-3

1.5 Normative References..1-4

1.6 Informative References ...1-4

2 OVERVIEW..2-1

2.1 Architecture Definition Methodology ..2-1

2.2 Architecture Overview ..2-1
2.2.1 Goals and Context..2-1

2.2.2 Core Framework ..2-2

2.2.3 Definitions..2-2

2.2.4 Structure...2-3

2.2.4.1 Bus Layer (Board Support Package)...2-7

2.2.4.2 Network & Serial Interface Services ..2-7

2.2.4.3 Operating System..2-7

2.2.4.4 CORBA Middleware ..2-7

2.2.4.5 Applications ..2-7

2.2.4.5.1 Adapters ..2-7

i

SCA version 2.2.2 FINAL / 15 May 2006

2.2.4.6 Reference Model...2-8

2.2.5 Networking Overview..2-9

3 SOFTWARE ARCHITECTURE DEFINITION...3-1

3.1 Operating Environment ..3-1
3.1.1 Operating System...3-1

3.1.2 CORBA Middleware & Services...3-1

3.1.2.1 Naming Service...3-2

3.1.2.2 Log Service ...3-2

3.1.2.2.1 Log Producers ...3-2

3.1.2.3 CORBA Event Service and Standard Events..3-2

3.1.2.3.1 CORBA Event Service..3-2

3.1.2.3.2 StandardEvent Module..3-3

3.1.3 Core Framework ..3-5

3.1.3.1 Base Application Interfaces ..3-6

3.1.3.1.1 Port..3-6

3.1.3.1.2 LifeCycle..3-8

3.1.3.1.3 TestableObject...3-10

3.1.3.1.4 PortSupplier ..3-12

3.1.3.1.5 PropertySet..3-13

3.1.3.1.6 Resource ..3-15

3.1.3.1.7 ResourceFactory ...3-17

3.1.3.2 Framework Control Interfaces ..3-20

3.1.3.2.1 Application ..3-20

3.1.3.2.2 ApplicationFactory..3-26

3.1.3.2.3 DomainManager ...3-32

3.1.3.2.4 DeviceManager ...3-50

3.1.3.3 Base Device Interfaces..3-57

3.1.3.3.1 Device..3-58

3.1.3.3.2 LoadableDevice...3-67

3.1.3.3.3 ExecutableDevice ..3-70

3.1.3.3.4 AggregateDevice ...3-74

3.1.3.4 Framework Services Interfaces...3-75

ii

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.4.1 File ..3-75

3.1.3.4.2 FileSystem ...3-79

3.1.3.4.3 FileManager ..3-86

3.1.3.5 Domain Profile..3-90

3.1.3.5.1 Software Package Descriptor ..3-91

3.1.3.5.2 Software Component Descriptor ...3-92

3.1.3.5.3 Software Assembly Descriptor..3-92

3.1.3.5.4 Properties Descriptor...3-92

3.1.3.5.5 Device Package Descriptor ...3-92

3.1.3.5.6 Device Configuration Descriptor ..3-92

3.1.3.5.7 Profile Descriptor ..3-92

3.1.3.5.8 DomainManager Configuration Descriptor ..3-92

3.1.3.6 Core Framework Base Types..3-92

3.1.3.6.1 DataType ...3-93

3.1.3.6.2 DeviceSequence ..3-93

3.1.3.6.3 FileException ..3-93

3.1.3.6.4 InvalidFileName..3-93

3.1.3.6.5 InvalidObjectReference...3-93

3.1.3.6.6 InvalidProfile...3-93

3.1.3.6.7 OctetSequence...3-93

3.1.3.6.8 Properties...3-93

3.1.3.6.9 StringSequence..3-94

3.1.3.6.10 UnknownProperties ...3-94

3.1.3.6.11 DeviceAssignmentType ..3-94

3.1.3.6.12 DeviceAssignmentSequence ...3-94

3.1.3.6.13 ErrorNumberType. ..3-94

3.2 Applications ..3-95

3.2.1 General Application Requirements..3-95

3.2.1.1 OS Services...3-95

3.2.1.2 CORBA Services ..3-95

3.2.1.3 CF Interfaces...3-95

3.2.2 Application Interfaces..3-96

iii

SCA version 2.2.2 FINAL / 15 May 2006

3.2.2.1 Service Definitions..3-96

3.3 Logical Device...3-96
3.3.1 OS Services..3-97

3.3.2 CORBA Services. ..3-97

3.3.3 CF Interfaces..3-98

3.3.4 Profile...3-98

3.4 General Software Rules...3-98
3.4.1 Software Development Languages ..3-98

3.4.1.1 New Software..3-98

3.4.1.2 Legacy Software ...3-98

4 ARCHITECTURE COMPLIANCE ...4-1

4.1 Certification Authority..4-1

4.2 Specification Authority..4-1

4.3 Responsibility for Compliance Evaluation ..4-1

4.4 Evaluating Compliance ...4-1

4.5 Registration. ...4-2

APPENDIX A. GLOSSARY

APPENDIX B. SCA APPLICATION ENVIRONMENT PROFILES

APPENDIX C. CORE FRAMEWORK IDL

APPENDIX D. DOMAIN PROFILE

iv

SCA version 2.2.2 FINAL / 15 May 2006

LIST OF FIGURES

Figure 2-1: SCA Architecture Layer Diagram.. 2-4

Figure 2-2: SCA Management Hierarchy at Instantiation .. 2-5

Figure 2-3: Relationship of Domain Profile XML File Types .. 2-6

Figure 2-4: Conceptual Model of Resources .. 2-8

Figure 3-1: Notional Relationship of OE and Application to the SCA AEP.............................. 3-1

Figure 3-2: Core Framework IDL Relationships .. 3-6

Figure 3-3: Port Interface UML ... 3-7

Figure 3-4: LifeCycle Interface UML ... 3-9

Figure 3-5: TestableObject Interface UML .. 3-10

Figure 3-6: PortSupplier Interface UML.. 3-12

Figure 3-7: PropertySet Interface UML ... 3-13

Figure 3-8: Resource Interface UML.. 3-15

Figure 3-9: ResourceFactory Interface UML... 3-17

Figure 3-10: Application Interface UML.. 3-21

Figure 3-11: Application Behavior ... 3-25

Figure 3-12: ApplicationFactory UML .. 3-26

Figure 3-13: ApplicationFactory Behavior... 3-31

Figure 3-14: DomainManager Interface UML... 3-32

Figure 3-15: DomainManager Sequence Diagram for registerDeviceManager Operation..... 3-38

Figure 3-16: DomainManager Sequence Diagram for registerDevice Operation.................... 3-41

Figure 3-17: DomainManager Sequence Diagram for registerService Operation 3-47

Figure 3-18: DeviceManager UML.. 3-50

Figure 3-19: Device Manager Startup Scenario.. 3-54

Figure 3-20: Device Interface UML ... 3-58

Figure 3-21: State Transition Diagram for adminState... 3-61

Figure 3-22: State Transition Diagram for allocateCapacity and deallocateCapacity 3-63

Figure 3-23: Release Aggregated Device Scenario .. 3-65

Figure 3-24: Release Composite Device Scenario.. 3-66

Figure 3-25: Release Composite & Aggregated Device Scenario .. 3-67

v

SCA version 2.2.2 FINAL / 15 May 2006

Figure 3-26: LoadableDevice Interface UML .. 3-68

Figure 3-27: ExecutableDevice Interface UML.. 3-71

Figure 3-28: AggregateDevice Interface UML... 3-74

Figure 3-29: File Interface UML .. 3-76

Figure 3-30: FileSystem Interface UML... 3-79

Figure 3-31: FileManager Interface UML ... 3-87

Figure 3-32: Relationship of Domain Profile XML File Types ... 3-91

Figure 3-33: Logical Device Interface Relationships ... 3-97

vi

SCA version 2.2.2 FINAL / 15 May 2006

FOREWORD

Introduction. The Software Communication Architecture (SCA) is published by the Joint
Program Executive Office (JPEO) of the Joint Tactical Radio System (JTRS). This architecture
was developed to assist in the development of software defined radio communication systems,
capturing the benefits of recent technology advances which are expected to greatly enhance
interoperability of communication systems and reduce development and deployment costs. The
SCA has been structured to:

1. provide for portability of applications software between different SCA
implementations,

2. leverage commercial standards to reduce development cost,

3. reduce software development time through the ability to reuse design modules,

4. build on evolving commercial frameworks and architectures.

The SCA is deliberately designed to meet commercial application requirements as well as those
of military applications. Since the SCA is intended to become a self-sustaining standard, a wide
cross-section of industry has been invited to participate in the development and validation of the
SCA. The SCA is not a system specification but an implementation independent set of rules that
constrain the design of systems to achieve the objectives listed above.

Core Framework. The Core Framework (CF) defines the essential, “core” set of open software
interfaces and profiles that provide for the deployment, management, interconnection, and
intercommunication of software application components in an embedded, distributed-computing
communication system. In this sense, all interfaces defined in the SCA are part of the CF.

Support and Rationale Document (SRD). The Support and Rationale document (SRD)
provides the rationale used to determine the requirements contained in this document. The SRD
also contains further supporting material including historical references, examples, and
implementation considerations and should be consulted when attempting to develop a product
compliant with this specification.

Feedback. An open architecture framework is greatly improved through active feedback and
recommended changes from a wide audience of potential users. The JPEO JTRS solicits and
encourages feedback to this document and provides a website for submitting feedback and
change proposals. The website can be found at https://jtrs.spawar.navy.mil/sca . Change
proposals to the SCA shall be unencumbered by copyrights, export restrictions, or intellectual
property rights.

vii

https://jtrs.spawar.navy.mil/sca

SCA version 2.2.2 FINAL / 15 May 2006

1 INTRODUCTION
The Software Communications Architecture (SCA) establishes an implementation-independent
framework with baseline requirements for the development of software for software defined
radios. The SCA is an architectural framework that was created to maximize portability,
interoperability, and configurability of the software while still allowing the flexibility to address
domain specific requirements and restrictions. Constraints on software development imposed by
the framework are on the interfaces and the structure of the software and not on the
implementation of the functions that are performed. The framework places an emphasis on areas
where reusability is affected and allows implementation unique requirements to determine a
specific application of the architecture.

1.1 SCOPE

This document together with its appendices as specified in the Table of Contents provides a
complete definition of the SCA.

The goal of this specification is to provide for the deployment, management, interconnection,
and intercommunication of software components in embedded, distributed-computing
communication systems. The SCA addresses a portion of software portability and
interoperability concerns – other aspects of these properties are addressed by different means as
indicated in Table 1.

Table 1: Portability and Interoperability and the SCA

Goals Responsibility

Software (operating on the host environment) meets all
original performance specifications; interoperate over the
air (OTA) with other communication systems, and
conflict with the correct operation of other software
when deployed on a SCA compliant system.

 not System Engineering and Testing

Software (compiled for a target host environment) may

l
Software Communications be installed, configured and operated on different SCA

compliant operating environments with a minima
amount of changes to the original code.

Architecture

Software implementations may be moved from one
specific host or development environment (i.e. a specifi
set of compilers, linkers, libraries, OS, chipsets, etc.
another with a minimal amount of changes to the o
code.

c
) to

riginal

Coding Standards, Software
Architecture and Design

he main body of the SCA addresses the goals identified for it in Table 1, while appendices to
this specification are used to extend the scope of the SCA in order to address some of the desired
portability and interoperability characteristics identified elsewhere in the table.

T

1-1

SCA version 2.2.2 FINAL / 15 May 2006

1.2 COMPLIANCE

As the Certification Authority, the JPEO JTRS is the sole entity that may authorize the use of
any trademarks, certification markings, as well as verbal or written claims with respect to a

s specification. Specific authorities and certification requirements are

ified

ertification Authority. Language used to identify requirements within this

product’s compliance to thi
found in section 4.

Compliance to this specification requires a product to meet all applicable requirements ident
within the scope of the specification. Applicability of requirements to specific products is
determined by the C
specification is defined in section 1.3.1.5. Requirements stated in this specification take
precedence when they are in conflict with other existing standards/specifications, cited or not
cited.

1.3 DOCUMENT CONVENTIONS, TERMINOLOGY, AND
DEFINITIONS

1.3.1 Conventions and Terminology

1 File and Director1.3.1. y Nomenclature

 the SCA, refer to both a “plain file” (equivalent to a
POSIX “regular file”) and a directory. An explicit reference is made within the text when

 “/”
elative pathname” does not have the leading “/” character. A

d Modeling Language (UML) [2], defined by the Object Management Group (OMG),
is used to graphically represent SCA interfaces, operational scenarios, use cases, and

a the UML used in this specification conforms to the

fined Interface Definition Language (IDL), [E] is used to define the SCA interfaces
within this specification.

1.3.1.4 eXtensible Markup Language

age (XML) [3] is used to create the SCA Domain Profile elements
which identify the capabilities, properties, inter-dependencies, and location of the hardware
devices and software components that make up an SCA-compliant system. The term “profile” is

The terms “file” and “filename” as used in

referring to only one of these.

Pathnames are used in accordance with the POSIX specification definition and may reference
either a plain file or a directory. An “absolute pathname” is a pathname which starts with a
(forward slash) character – a “r
“path prefix” is a pathname which refers to a directory and thus does not include the name of a
plain file.

1.3.1.2 Unified Modeling Language

The Unifie

collabor tion diagrams. Where feasible,
syntax recommended by the OMG for Common Object Request Broker Architecture (CORBA)
usage [A].

1.3.1.3 Interface Definition Language

The OMG de

eXtensible Markup Langu

1-2

SCA version 2.2.2 FINAL / 15 May 2006

used to refer to either the raw XML format of these files as well as these same files in a parsed
format. References to a specific file (e.g. SAD, DCD) refer to the raw XML format per the

e
hieve compliance. No deviations are permitted.

icate a strict and absolute prohibition of this specification.

The word “should“ is used to indicate a recommended course of action among several possible

e
e

 “are”) used in conjunction with the association of a value to a

is

attributes, operation parameters, and realized interfaces are presented in plain text. “CF”

how an
ndicate elements of the OS, orange

for the Framework Control, Framework Service, and Device Interfaces and yellow for the Base
t aces. Figure objects containing more than one of these colors indicate that the

object relates to more than one SCA element – usually depending on context.

definitions in section 3.1.3.5.

1.3.1.5 Requirements Language

The word “shall” is used to indicate absolute requirements of this specification which must b
strictly followed in order to ac

The phrase “shall not” is used to ind

choices, without mentioning or excluding others. “Should not” is used to discourage a course of
action without prohibiting it.

The word “may” is used to indicate a truly optional item or allowable course of action within th
scope of the specification. A product which chooses not to implement the indicated item must b
able to interoperate with one that does without impairment of required behavior.

The word “is” (or equivalently
data type indicates a required value or condition when multiple values or conditions are possible.

1.3.1.6 Core Framework Interface and Operation Identification

References to interface names, their operations and defined XML elements/attributes within th
specification are presented in italicized text. All interface names are capitalized. Interface

precedes references to Core Framework Base Types (3.1.3.6)

1.3.1.7 Figures

The figures contained in this document use coloration to identify elements of the SCA or
object in a figure relates to those elements. Brown is used to i

Applica ion Interf

1.3.2 Definitions

A list of acronyms and definitions used in this specification are provided in Appendix A.

1.4 DOCUMENT CONTENT

The Foreword and Section 1 of this document provide an introduction to this specification and

oftware Communications Architecture as well as a
rs prescribed by the specification.

provides the definitions and rules for its usage.

Section 2 provides an overview of the S
description of the interfaces and behavio

Section 3 provides the detailed description of the architecture framework and the specification
requirements.

1-3

SCA version 2.2.2 FINAL / 15 May 2006

Section 4 defines the appropriate authorities for incorporating changes, recommendations,
additions, or retractions into this specification, for validating compliance, and for granting

ntains a glossary of terms and acronyms used in this specification.

ontains the Interface Definition Language (IDL) code used to define the interfaces

ain provisions or requirements which by reference constitute

ing System Interface (POSIX®), ISO/IEC

1:2005(E)

tion,
 2004F

EE Std

[5] pecification version 1.0: OMG Document formal/02-08-01, August

[6]
[7] ght Log Service Specification: OMG Document formal/05-02-02: v1.1

1.1.

te

ce or
a

[A] OMG Document formal/02-04-01; UML Profile for CORBA, version 1.0.

certification.

Appendix A co

Appendix B provides the specific requirements for the SCA Application Environment Profile
(AEP) required as part of compliance to this specification.

Appendix C c
required by this specification.

Appendix D contains the definitions and requirements for creating the SCA Domain Profile.

1.5 NORMATIVE REFERENCES

The following documents cont
requirements of this specification. Applicable versions are as stated.

[1] Information technology - Portable Operat
9945:2003

[2] UML: OMG (Object Management Group) Unified Modeling Language Specification,
Version 1.4.2, formal/05-04-01 (also available as ISO/IEC 1950

[3] XML: Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommenda
04 February

[4] IEEE Standard for Information Technology – Standardized Application Environment
Profile (AEP) – POSIX® Realtime and Embedded Application Support, IE
1003.13-2003.

Minimum CORBA S
2001.

OMG Document formal/00-11-01: Interoperable Naming Service Specification.

OMG Lightwei

[8] OMG Event Service Specification: OMG Document formal/01-03-01 and Event Service
IDL, v

[9] DCE UUID standard (OSF Distributed Computing Environment, DCE 1.1 Remo
Procedure Call).

1.6 INFORMATIVE REFERENCES

The following is a list of documents referenced within this specification or used as referen
guid nce material in its development.

® POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

1-4

SCA version 2.2.2 FINAL / 15 May 2006

[B] “Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley
Professional Computing) Gamma, Helm, Johnson, and Vlissides.

e and

[C] Joint Program Executive Office for the Joint Tactical Radio System (JPEO JTRS), JTRS
Charter 13 October 2005.

[D] JTRS Standards Waiver Process, JPEO JTRS, 2 December 2005, version 1.0.

[E] The Common Object Request Broker: Architecture and Specification, version 3.0.3
formal/04-03-12, Object Management Group, Inc. (OMG)

[F] Joint Technical Architecture, Version 2.0, 26 May 1998.

[G] C Standard: Programming languages – C, ISO/IEC 9899:1999.

[H] ISO/IEC 10731 Conventions for the Definition of OSI Services, Annex D Alternativ
Additional Time Sequence Diagrams for Two-party Communications.

1-5

SCA version 2.2.2 FINAL / 15 May 2006

2 OVERVIEW
This section presents an architectural overview of the SCA which defines the fundamental
organization of the components that compose this specification. A high-level description of the
components, their responsibilities, as well as their relationship to each other and the environment
are also provided. Technical details and specific requirements of the architecture and individual
components are contained in section 3.

2.1 ARCHITECTURE DEFINITION METHODOLOGY

The architecture has been developed using an object-oriented approach including current best
practices from software component models and software design patterns. Unless stated, no
explicit grouping or separation of interfaces is required within an implementation. The interface
definitions and required behaviors that follow in section 3, define the responsibilities, roles, and
relationships of components implementing that interface. Within this specification, the Unified
Modeling Language (UML) [2] is used to graphically represent interfaces and the Interface
Definition Language (IDL) provided in Appendix C contains the textual representation of the
interfaces.

2.2 ARCHITECTURE OVERVIEW

2.2.1 Goals and Context

The goal of this specification is to provide for the deployment, management, interconnection,
and intercommunication of software components in embedded, distributed-computing
communication systems. This specification is targeted towards facilitating the development of
software defined radios (SDRs) with the additional goals of maximizing software application
portability, reusability, and scalability through the use of commercial protocols and products.

Although there are many definitions of a SDR, it is in essence a radio or communication system
whose output signal is determined by software. In this sense, the output is entirely
reconfigurable at any given time, within the limits of the radio or system hardware capabilities
(e.g. processing elements, power amplifiers, antennas, etc.) merely by loading new software as
required by the user. Since this software determines the output signal of the system, it is
typically referred to as “waveform software” or simply as the “waveform” itself. This ability to
add, remove, or modify the output of the system through reconfigurable and redeployable
software, leads to communication systems capable of multiple mode operation (including
variable signal formatting, data rates, and bandwidths) within a single hardware configuration.
Simultaneous multi-mode operation is possible when a multi-channel configuration is available.

Since the functionality of software itself is virtually limitless, there is a large degree of
dependency placed on the ability to select and configure the appropriate hardware to support the
software available or required for a specific system. The selection of hardware is not restricted to
the input/output (I/O) devices typically associated with communication systems (analog-to-
digital converters, power amplifiers, etc.). It is also dependent on the type and capabilities of the
processing elements (General Purpose Processors (GPP), Digital Signal Processors (DSP), Field-
Programmable Gate Arrays (FPGA), etc.) that are required to be present, since typically the
software required to generate a given output signal will consist of many components of different

2-1

SCA version 2.2.2 FINAL / 15 May 2006

types based on performance requirements. From an illustrative view, this results in a system that
is represented by a variable collection of hardware elements which need to be connected together
to form communication pathways based on the specific software loaded onto the system. The
role of the SCA is then to provide a common infrastructure for managing the software and
hardware elements present in a system and ensuring that their requirements and capabilities are
commensurate. The SCA accomplishes this function by defining a set of interfaces that isolate
the system applications from the underlying hardware. This set of interfaces is referred to as the
Core Framework of the SCA.

Additionally, the SCA provides the infrastructure and support elements needed to ensure that
once software components are deployed on a system, they are able to execute and communicate
with the other hardware and software elements present in the system.

2.2.2 Core Framework

The Core Framework is the essential set of open application-layer CORBA interfaces and
services which provide an abstraction of the underlying system software and hardware. The
Core Framework consists of:

Base Application Interfaces: Port, LifeCycle, TestableObject, PropertySet,
PortSupplier, ResourceFactory, and Resource), which provide the management and
control interfaces for all system software components.

Base Device Interfaces: Device, LoadableDevice, ExecutableDevice, and
AggregateDevice, which allows the management and control of hardware devices within
the system through their software interface,

Framework Control Interfaces: Application, ApplicationFactory, DomainManager,
and DeviceManager, which control the instantiation, management, and
destruction/removal of software from the system,

Framework Services Interfaces: File, FileSystem, and FileManager, that provide
additional support functions and services.

2.2.3 Definitions

The SCA differentiates between waveform “application” software – software that manipulates
input data and determines the output of the system – from the software that provides the
capabilities for waveforms to execute and access to the systems hardware resources. The
“application” software implements the Base Application Interfaces identified in section 2.2.2.
The software components that provide access to the system hardware resources are referred to as
SCA “devices” that implement the Base Device Interfaces. Non-hardware (software-only)
resources provided by the system for use by applications are generically referred to as “services”,
however the SCA does not specify an interface that must be realized by these components. The
SCA standardizes the component interfaces but does not place implementation requirements (e.g.
transport mechanisms) on the software.

The software components which provide for the management and execution of the SCA
applications and devices comprise the SCA-defined operating environment (OE). The OE
consists of an operating system (OS), CORBA middleware (including the OMG-defined Event

2-2

SCA version 2.2.2 FINAL / 15 May 2006

and Naming Services), and the elements defined by the Framework Control and Service
Interfaces.

2.2.4 Structure

The architectural structure of the SCA is presented in Figure 2-1. In the SCA, an application
consists of multiple software components that are loaded onto a distributed-processing system.
These components are managed by an implementation of the Framework Control Interfaces. The
application components communicate either with each other or with the services and devices
provided by the system through extensions of the SCA-defined Port interface. Similarly,
communications between the application and the Framework Services Interfaces are
accomplished through the CORBA middleware. It is intended that the APIs to the services and
devices (“System Components” in Figure 2-1) be standardized for a given system or domain so
that in conjunction with the Framework Interfaces, all communications between the application
and the system are uniform across multiple systems. However, being system and domain
specific, the standardization of these interfaces is outside the scope of this specification.

An application may access OS functionality but is restricted to the operations enumerated in the
SCA Application Environment Profile (Appendix B) which is a subset of the Portable Operating
System Interface (POSIX) specification [4]. POSIX is an accepted industry standard and its real-
time extensions are compatible with the requirements to support the OMG CORBA
specification. Since defined POSIX profiles can encompass more features than are necessary to
control a typical implementation, this specification defines a minimal POSIX profile to facilitate
attainment of the SCA objectives.

Similar to the application components, system components are managed by the Framework
Control Interfaces through the Base Device Interfaces and are limited . However, unlike
application components, system components are not restricted in their use of functionality
provided by the OS since these components are in general, system specific.

2-3

SCA version 2.2.2 FINAL / 15 May 2006

CORBA
FC FS FC AEP FS FC AEP

CORBA
FS

System
Component

Application
Component

CORBA
FC FS

Application
Component

System
Component

API

API

API

Operating System

Legend
Application Component…………………………….
System Component………………………………...

Common Object Request Broker (CORBA)……..
SCA Application Environment Profile (AEP)……..

Framework Control (FC) and
Framework Services (FS)………………………....

LegendLegend
Application Component…………………………….Application Component…………………………….
System Component………………………………...System Component………………………………...

Common Object Request Broker (CORBA)……..Common Object Request Broker (CORBA)……..
SCA Application Environment Profile (AEP)……..SCA Application Environment Profile (AEP)……..

Framework Control (FC) and
Framework Services (FS)………………………....
Framework Control (FC) and
Framework Services (FS)………………………....

Figure 2-1: SCA Architecture Layer Diagram

All SCA compliant systems require certain software components to be present in order to
provide for component deployment, management, and interconnection. These components
include the DomainManager (including support for the ApplicationFactory and Application
interfaces), DeviceManager, FileManager, and FileSystem interfaces and their required
behaviors. The management hierarchy of these entities is depicted in Figure 2-2.

An SCA compliant system includes a domain manager which contains knowledge of all existing
implementations installed or loaded onto the system including references to all file systems
(through the file manager), device managers, and all applications (and their resources).

Each device manager, in turn, contains complete knowledge of a set of devices and/or services.
A system may have multiple device managers but each device manager registers with the domain
manager to ensure that the domain manager has complete cognizance of the system. A device
manager may have an associated file system (or file manager to support multiple file systems) as
indicated in the Figure 2-2.

The implementation of the Application interface (created by the ApplicationFactory) OE
provided proxy for an application contains all the information regarding a specific application
that is instantiated on the system.

2-4

SCA version 2.2.2 FINAL / 15 May 2006

Figure 2-2: SCA Management Hierarchy at Instantiation

In order to describe the characteristics and attributes of the services, devices, and applications
installed on the system, the SCA defines a set of files referred to as the Domain Profile. The
Domain Profile is a hierarchical collection of eXtensible Markup Language (XML) files that
define the properties of all software components in the system. All CORBA software elements
of the system are described by a Software Package Descriptor (SPD) and a Software Component
Descriptor (SCD) file.

The SPD provides identification of the software (title, author, etc.) as well as the name of the
code file (executable, library or driver), implementation details (language, OS, etc.),
configuration and initialization properties (contained in a Properties File), dependencies to other
SPDs and devices, and a reference to a Software Component Descriptor.

The Software Component Descriptor (SCD) defines CORBA interfaces supported and used by a
specific component.

Since applications are composed of multiple SW components a Software Assembly Descriptor
(SAD) file is defined to determine the composition and configuration of the application. The
SAD references all SPDs needed for this application, defines required connections between
application components (connection of provides and uses ports / interfaces), defines needed
connections to devices and services, provides additional information on how to locate the needed
devices and services, defines any co-location (deployment) dependencies, and identifies a single
component within the application as the assembly controller.

2-5

SCA version 2.2.2 FINAL / 15 May 2006

Figure 2-3: Relationship of Domain Profile XML File Types

An application consists of one or more software modules that, when loaded and executed, create
one or more components (e.g. Resources or ResourceFactories), which comprise the application.
These components use the facilities of the platform devices and services. The software profile for
an application consists of one SAD file that references (directly or indirectly) one or more SPD,
SCD, and properties (PRF) files. An SPD file contains the details of an application’s software
module that is to be loaded and executed. The SPD specifies the Device implementation
requirements for loading dependencies (processor kind, etc.) and processing capacities (e.g.,
memory, process) for an application software module.

Similar to the application SAD, a device manager has an associated Device Configuration
Descriptor (DCD) file. The DCD identifies all devices and services associated with this device

2-6

SCA version 2.2.2 FINAL / 15 May 2006

manager, by referencing the associated SPDs. The DCD also defines properties of the specific
device manager, enumerates the needed connections to services (e.g. file systems), and provides
additional information on how to locate the domain manager. In addition to an SPD, a device
may have a Device Package Descriptor (DPD) file which provides a description of the hardware
device associated with this (logical) device including description, model, manufacturer, etc.

The implementation of the Domain Manager is itself described by the DomainManager
Configuration Descriptor (DMD) which provides the location of the (SPD) file for the specific
DomainManager implementation to be loaded. It also specifies the connections to other software
components (services and devices) which are required by the domain manager.

2.2.4.1 Bus Layer (Board Support Package)

The SCA is capable of operating on commercial bus architectures. The OE supports reliable
transport mechanisms, which may include error checking and correction at the bus support level.

2.2.4.2 Network & Serial Interface Services

The SCA relies on commercial components to support multiple unique serial and network
interfaces. To support these interfaces, various low-level network protocols may be used.
Elements of waveform networking functionality may also exist at the Operating System layer.

2.2.4.3 Operating System

The SCA includes real-time embedded operating system functions (profiled by the AEP for
applications), to provide multi-threaded support for all software executing on the system,
including applications, devices, and services.

2.2.4.4 CORBA Middleware

CORBA is used as the message passing technique for the distributed processing environment.
CORBA is a cross-platform framework that is used to standardize client/server operations when
using distributed processing. Distributed processing is a fundamental aspect of the system
architecture and CORBA is a widely used “Middleware” service for providing distributed
processing.

2.2.4.5 Applications

Applications consist of one or more resources. The Resource interface provides a common SCA
API for the control and configuration of software components. Application developers may
extend these capabilities by creating specialized Resource interfaces for the application. At a
minimum, the extension inherits the Resource interface. The design of a resource’s internal
functionality is not dictated by the Software Communications Architecture. This is left to the
application developer.

2.2.4.5.1 Adapters
Adapters are resources or devices used to support the use of non-CORBA capable elements
within the domain. Adapters are used in an implementation to provide the translation between

2-7

SCA version 2.2.2 FINAL / 15 May 2006

non-CORBA-capable components or devices and CORBA-capable Resources. The Adapter
concept is based on the industry-accepted Adapter design pattern [B]. Since an Adapter
implements the CF CORBA interfaces known to other CORBA-capable Resources, the
translation service is transparent to the CORBA-capable Resources. Adapters become
particularly useful to support non-CORBA-capable processing elements.

2.2.4.6 Reference Model

The SCA realizes the reference model by defining a standard unit of functionality called a
Resource. All applications are comprised of resources and using devices. Specific resources and
devices can be identified corresponding to the functional entities but this mapping is not
identified or required by this specification.

Figure 2-4 shows examples of inheritance hierarchy for Resources. The operations and attributes
provided by the LifeCycle, TestableObject, PortSupplier, and PropertySet interfaces establish a
common approach for interacting with any resource in a SCA environment. The Port interface is
used for pushing or pulling messages between resources and devices. A resource may consist of
zero or more input and output message ports. The figure also shows examples of more
specialized resources and devices that result in specific functionality.

Figure 2-4: Conceptual Model of Resources

2-8

SCA version 2.2.2 FINAL / 15 May 2006

2.2.5 Networking Overview

External networking protocols define the communications between a SCA-compliant radio
system and its peer systems. A network of nodes is formed between systems which are
interconnected by repeaters, bridges, routers, and/or gateways. External-networking protocols
will typically communicate peer-to-peer at different layers using physical layer interconnections
with a repeater function, link layer interconnections with a bridge function, network layer
interconnections with standard network routing, or upper layer interconnections with application
gateways.

The different categories of interoperability are outlined below based upon the OSI Model. There
may be multiple levels of interoperability within the same system on a waveform-by-waveform
basis.

1. Physical Layer Interoperability. The external networking protocols provide a
compatible physical interface, including the signaling interface, but no higher
layer processing. This level of interoperability is adequate for a simple bit-by-bit
bridging or relay operation between two interfaces.

2. Link Layer Interoperability. The external networking protocols provide link
layer processing over all physical interfaces. This level of interoperability is
adequate for allowing the radio to be used as transport and for allowing the radio
to use another network as transport. Intelligent routing or switching decisions are
limited to local layer 2 routing.

3. Network Layer Interoperability. The external networking protocols provide
network layer address processing interoperability. The radio and the networks
being inter-operated are sub-networks of the same Inter-network. At this level,
intelligent switching and routing decisions can be made end-to-end.

4. Host Level Interoperability (Layers 4 – 7). Embedded applications can
exchange information with hosts attached to the network. An example of this is a
handheld radio that contains embedded Situation Awareness (SA) application
exchanging SA updates with a vehicular platform in an external sub-network. In
this example, the radio provides message payload translations to allow two
otherwise incompatible hosts to communicate.

In order to support application portability, standard interfaces are required between application
protocol entities.

2-9

SCA version 2.2.2 FINAL / 15 May 2006

3 SOFTWARE ARCHITECTURE DEFINITION

3.1 OPERATING ENVIRONMENT

This section contains the requirements of the operating system, middleware, and the CF
interfaces and operations that comprise the SCA Operating Environment.

3.1.1 Operating System

The processing environment and the functions performed in the architecture impose differing
constraints on the architecture. An SCA application environment profile (AEP) is defined to
support portability of waveforms, scalability of the architecture, and commercial viability.
POSIX specifications are used as a basis for this profile. The notional relationship of the OE and
applications to the SCA AEP is depicted in Figure 3-1. The OE shall provide the functions and
options designated as mandatory by the AEP defined in Appendix B. The OE is not limited to
providing the functions and options designated as mandatory by the profile. Implementations of
the CORBA Object Request Broker (ORB), the CF Framework Control Interfaces, Framework
Services Interfaces, and Base Device Interfaces are not limited to using the services designated
as mandatory by the SCA AEP.

Operating System

ORB and
CORBA
Services

Core Framework Control,
Services, Devices, and

File access
AEP

Application Resources

CORBA APIs
CF Interfaces

Operating System

ORB and
CORBA
Services

Core Framework Control,
Services, Devices, and

File access
AEP

Application Resources

CORBA APIs
CF Interfaces

Figure 3-1: Notional Relationship of OE and Application to the SCA AEP

The OE and related file systems shall support a filename length of 40 characters and a pathname
length of 1024 characters.

Applications are limited to using the OS services that are designated as mandatory for the profile.
Applications perform file access through the CF. (Application requirements are covered in
section 3.2)

3.1.2 CORBA Middleware & Services

The OE shall include middleware that, at a minimum, provides the services and capabilities of
minimumCORBA as specified by the OMG Document in reference [5].

3-1

SCA version 2.2.2 FINAL / 15 May 2006

3.1.2.1 Naming Service

The OE shall provide an implementation of a CORBA Naming Service which implements the
CosNaming module NamingContext interface operations: bind, bind_new_context, unbind,
destroy, and resolve as defined in the OMG Interoperable Naming Service Specification [6]
using the IDL found in Appendix A of that reference.

A Naming Service’s NameComponent structure is made up of an id-and-kind pair. The “id”
element of each NameComponent is a string value that uniquely identifies a NameComponent.
The “kind” element of each NameComponent shall be “” (null string).

3.1.2.2 Log Service

An SCA compliant implementation may include a log service. If a log service is implemented,
the log service shall conform to the OMG Lightweight Log Service Specification [7].

3.1.2.2.1 Log Producers

A log producer is a CF component (e.g., DomainManager, Application, ApplicationFactory,
DeviceManager, Device) or an application’s CORBA capable component (e.g., Resource,
ResourceFactory) that produces log records using the Lightweight Log Service
CosLwLog::LogProducer interface. Log records are of type CosLwLog::ProducerLogRecord.

Log producers shall implement a configure property which is a CF Properties type with an id of
“PRODUCER_LOG_LEVEL” and a value that is a CosLwLog::LogLevelSequence. The value of
this configure property contains all log levels that are enabled. A log producer shall only output
log records that contain an enabled CosLwLog::LogLevel value. Log levels that are not in the
CosLwLog::LogLevelSequence are disabled.

Log producers and CF components that are required by this specification to write log records
shall operate normally in the absence of a log service or in the case where the connections to a
log are nil or an invalid reference.

Log producers shall use their component identifier attribute in the producerId field of the
CosLwLog::ProducerLogRecord.

3.1.2.3 CORBA Event Service and Standard Events

3.1.2.3.1 CORBA Event Service
The OE shall provide an implementation of the CORBA Event Service. The Event Service shall
implement the PushConsumer and PushSupplier interfaces of the CosEventComm module as
described in OMG Event Service Specification [8] using the IDL found in that specification.

The CosEventComm CORBA Module is used by consumers for receiving events and by
producers for generating events. A component (e.g., Resource, DomainManager, etc.) that
consumes events shall implement the CosEventComm PushConsumer interface. A component
(e.g., Resource, Device, DomainManager, etc.) that produces events shall implement the
CosEventComm PushSupplier interface and use the CosEventComm PushConsumer interface
for generating the events. A producer component shall not forward or raise any exceptions when
the connection to a CosEventComm PushConsumer is a nil or invalid reference.

3-2

SCA version 2.2.2 FINAL / 15 May 2006

The CORBA Event Service has the capability to create event channels. An event channel allows
multiple suppliers to communicate with multiple consumers asynchronously. An event channel is
both a consumer and a producer of events. For example, event channels may be standard
CORBA objects and communicate with those channels is accomplished using standard CORBA
requests. The OE shall provide two standard event channels: Incoming Domain Management and
Outgoing Domain Management. The Incoming Domain Management Channel name shall be
"IDM_Channel". The Outgoing Domain Management Channel name shall be "ODM_Channel".
The Incoming Domain Management event channel is used by components within the domain to
generate events (e.g., Device state change event) that are consumed by domain management
functions (e.g., ApplicationFactory, Application, DomainManager, etc.). The Outgoing Domain
Management Channel is used by domain clients (e.g., HCI) to receive events (e.g., additions or
removals from the domain) generated from domain management functions (e.g.,
ApplicationFactory, Application, DomainManager, etc.). Besides these two standard event
channels, the OE allows other event channels to be set up by application developers.

3.1.2.3.2 StandardEvent Module

The StandardEvent module contains type definitions that are used for passing events from event
producers to event consumers. The IDL for this module is found in Appendix C of this
specification.

3.1.2.3.2.1 Types

3.1.2.3.2.1.1 StateChangeCategoryType

The type StateChangeCategoryType is an enumeration that is utilized in the
StateChangeEventType. It is used to identify the category of state change that has occurred.
enum StateChangeCategoryType
{
 ADMINISTRATIVE_STATE_EVENT,
 OPERATIONAL_STATE_EVENT,
 USAGE_STATE_EVENT
};

3.1.2.3.2.1.2 StateChangeType

The type StateChangeType is an enumeration that is utilized in the StateChangeEventType. It is
used to identify the specific states of the event source before and after the state change occurred.
enum StateChangeType
{
 LOCKED, /*Administrative State Event */
 UNLOCKED, /*Administrative State Event */
 SHUTTING_DOWN, /*Administrative State Event */
 ENABLED, /*Operational State Event */
 DISABLED, /*Operational State Event */
 IDLE, /*Usage State Event */
 ACTIVE, /*Usage State Event */
 BUSY /*Usage State Event */
};

3-3

SCA version 2.2.2 FINAL / 15 May 2006

3.1.2.3.2.1.3 StateChangeEventType

The type StateChangeEventType is a structure used to indicate that the state of the event source
has changed.
struct StateChangeEventType
{
 string producerId;
 string sourceId;
 StateChangeCategoryType stateChangeCategory;
 StateChangeType stateChangeFrom;
 StateChangeType stateChangeTo;
};

3.1.2.3.2.1.4 SourceCategoryType

The type SourceCategoryType is an enumeration that is utilized in the
DomainManagementObjectAddedEventType and
DomainManagementObjectRemovedEventType. It is used to identify the type of object that has
been added to or removed from the domain.
enum SourceCategoryType
{
 DEVICE_MANAGER,
 DEVICE,
 APPLICATION_FACTORY,
 APPLICATION,
 SERVICE
};

3.1.2.3.2.1.5 DomainManagementObjectRemovedEventType

The type DomainManagementObjectRemovedEventType is a structure used to indicate that the
event source has been removed from the domain.
struct DomainManagementObjectRemovedEventType
{
 string producerId;
 string sourceId;
 string sourceName;
 SourceCategoryType sourceCategory;
};

3.1.2.3.2.1.6 DomainManagementObjectAddedEventType

The type DomainManagementObjectAddedEventType is a structure used to indicate that the
event source has been added to the domain.
struct DomainManagementObjectAddedEventType
{
 string producerId;
 string sourceId;
 string sourceName;

3-4

SCA version 2.2.2 FINAL / 15 May 2006

 SourceCategoryType sourceCategory
 Object sourceIOR;
};

3.1.3 Core Framework

This section includes a detailed description of the purpose of each CF interface, the purpose of
each supported operation within the interface, and interface class diagrams to support these
descriptions. The corresponding IDL for the CF is found in Appendix C.

Figure 3-2 depicts the key elements of the CF and the IDL relationships between these elements.
A DomainManager component manages the software applications, application factories,
hardware devices (represented by software devices) and device managers within the system.
Some software components may directly control the system’s internal hardware devices; these
components are logical devices, which implement the Device, LoadableDevice, or
ExecutableDevice interfaces. Other software components have no direct relationship with a
hardware device, but perform application services for the user and implement the Resource
interface. This interface provides a consistent way of configuring and tearing down these
components. Each resource can potentially communicate with other resources. An application is
a specific collection of one or more resources which provides a specified service or function and
which is managed through the Application interface. The resources of an application are
allocated to one or more hardware devices by the application factory based upon various factors
including the current availability of hardware devices, the behavior rules of a resource, and the
loading requirements of each resource. The resources may then be created by using the
ResourceFactory interface or through the Device interfaces (Device, LoadableDevice, or
ExecutableDevice) an connected to other resources or devices resident on the system.

3-5

SCA version 2.2.2 FINAL / 15 May 2006

Figure 3-2: Core Framework IDL Relationships

The file service interfaces (FileManager, FileSystem, and File) are used for installation and
removal of application files, and for loading and unloading application files on the various
processors that the devices execute upon.

3.1.3.1 Base Application Interfaces

Base Application Interfaces are defined by the Core Framework requirements and implemented
by application developers; see section 3.2 for application requirements.

Base Application Interfaces shall be implemented using the CF IDL presented in Appendix C.

3.1.3.1.1 Port
3.1.3.1.1.1 Description

This interface provides operations for managing associations between ports. The Port interface
UML is depicted in Figure 3-3. An application defines a specific port type by specifying an
interface that inherits the Port interface. An application establishes the operations for
transferring data and control. The application also establishes the meaning of the data and
control values. Examples of how applications may use ports in different ways include: push or
pull, synchronous or asynchronous, mono- or bi-directional, or whether to use flow control (e.g.,
pause, start, stop).

The nature of Port fan-in, fan-out, or one-to-one is component dependent.

3-6

SCA version 2.2.2 FINAL / 15 May 2006

How components' ports are connected is described in the software assembly descriptor (SAD)
and the device configuration descriptor (DCD) files of the Domain Profile (3.1.3.5).

3.1.3.1.1.2 UML

Figure 3-3: Port Interface UML

3.1.3.1.1.3 Types

3.1.3.1.1.3.1 InvalidPort

The InvalidPort exception indicates one of the following errors has occurred in the specification
of a Port association:

1. errorCode 1 means the Port component is invalid (unable to narrow object
reference) or illegal object reference,

2. errorCode 2 means the Port name is not found (not used by this Port).
exception InvalidPort { unsigned short errorCode; string msg; };

3.1.3.1.1.3.2 OccupiedPort

The OccupiedPort exception indicates the port is unable to accept any additional connections.
exception OccupiedPort{};

3.1.3.1.1.4 Attributes

N/A.

3.1.3.1.1.5 Operations

3.1.3.1.1.5.1 connectPort

3.1.3.1.1.5.1.1 Brief Rationale

Applications require the connectPort operation to establish associations between ports. Ports
provide channels through which data and/or control pass.

The connectPort operation provides half of a two-way association; therefore two calls are
required to create a two-way association.

3-7

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.1.1.5.1.2 Synopsis
void connectPort (in Object connection, in string connectionId)
raises (InvalidPort, OccupiedPort);

3.1.3.1.1.5.1.3 Behavior

The connectPort operation shall make a connection to the component identified by its input
parameters.

A port may support several connections. The input connectionId is a unique identifier to be used
by the disconnectPort operation when breaking a specific connection.

3.1.3.1.1.5.1.4 Returns

This operation does not return a value.

3.1.3.1.1.5.1.5 Exceptions/Errors

The connectPort operation shall raise the InvalidPort exception when the input connection
parameter is an invalid connection for this port.

The connectPort operation shall raise the OccupiedPort exception when unable to accept the
connections because the port is already fully occupied.

3.1.3.1.1.5.2 disconnectPort

3.1.3.1.1.5.2.1 Brief Rationale

Applications require the disconnectPort operation in order to allow consumer/producer data
components to disassociate themselves from their counterparts (consumer/producer).

3.1.3.1.1.5.2.2 Synopsis
void disconnectPort (in string connectionId) raises
(InvalidPort);

3.1.3.1.1.5.2.3 Behavior

The disconnectPort operation shall break the connection to the component identified by the input
connectionId parameter.

3.1.3.1.1.5.2.4 Returns

This operation does not return a value.

3.1.3.1.1.5.2.5 Exceptions/Errors

The disconnectPort operation shall raise the InvalidPort exception when the input connectionId
parameter is not a known connection to the Port component.

3.1.3.1.2 LifeCycle
3.1.3.1.2.1 Description

The LifeCycle interface defines the generic operations for initializing or releasing instantiated
component-specific data and/or processing elements. The LifeCycle interface UML is depicted
in Figure 3-4.

3-8

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.1.2.2 UML

Figure 3-4: LifeCycle Interface UML

3.1.3.1.2.3 Types

3.1.3.1.2.3.1 InitializeError

The InitializeError exception indicates an error occurred during component initialization. The
message is component-dependent, providing additional information describing the reason why
the error occurred.
exception InitializeError { StringSequence errorMessage; };

3.1.3.1.2.3.2 ReleaseError

The ReleaseError exception indicates an error occurred during the component releaseObject
operation. The message is component-dependent, providing additional information describing
the reason why the error occurred.
exception ReleaseError { StringSequence errorMessage; };

3.1.3.1.2.4 Attributes

N/A.

3.1.3.1.2.5 Operations

3.1.3.1.2.5.1 initialize

3.1.3.1.2.5.1.1 Brief Rationale

The purpose of the initialize operation is to provide a mechanism to set a component to a known
initial state. For example, data structures may be set to initial values, memory may be allocated,
hardware devices may be configured to some state, etc.

3.1.3.1.2.5.1.2 Synopsis
void initialize() raises (InitializeError);

3.1.3.1.2.5.1.3 Behavior

Initialization behavior is implementation dependent.

3-9

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.1.2.5.1.4 Returns

This operation does not return a value.

3.1.3.1.2.5.1.5 Exceptions/Errors

The initialize operation shall raise an InitializeError exception when an initialization error
occurs.

3.1.3.1.2.5.2 releaseObject

3.1.3.1.2.5.2.1 Brief Rationale

The purpose of the releaseObject operation is to provide a means by which an instantiated
component may be torn down.

3.1.3.1.2.5.2.2 Synopsis
void releaseObject() raises (ReleaseError);

3.1.3.1.2.5.2.3 Behavior

The releaseObject operation shall release all internal memory allocated by the component during
the life of the component. The releaseObject operation shall tear down the component and
release it from the CORBA environment.

3.1.3.1.2.5.2.4 Returns

This operation does not return a value.

3.1.3.1.2.5.2.5 Exceptions/Errors

The releaseObject operation shall raise a ReleaseError exception when a release error occurs.

3.1.3.1.3 TestableObject
3.1.3.1.3.1 Description

The TestableObject interface defines a set of operations that is used to test component
implementations. The TestableObject interface UML is depicted in Figure 3-5.

3.1.3.1.3.2 UML

Figure 3-5: TestableObject Interface UML

3.1.3.1.3.3 Types

3.1.3.1.3.3.1 UnknownTest

The UnknownTest exception indicates the input testId parameter is not known by the component.

3-10

SCA version 2.2.2 FINAL / 15 May 2006

exception UnknownTest{};

3.1.3.1.3.4 Attributes

N/A.

3.1.3.1.3.5 Operations

3.1.3.1.3.5.1 runTest

3.1.3.1.3.5.1.1 Brief Rationale

The runTest operation allows components to be “black box” tested. This allows built-in tests
(BITs) to be implemented which provide a means to isolate faults (both software and hardware)
within the system.

3.1.3.1.3.5.1.2 Synopsis
void runTest (in unsigned long testId, inout Properties
testValues) raises (UnknownTest, UnknownProperties);

3.1.3.1.3.5.1.3 Behavior

The runTest operation shall use the input testId parameter to determine which of its predefined
test implementations should be performed. The id/value pair(s) of the testValues parameter shall
be used to provide additional information to the implementation-specific test to be run. The
runTest operation shall return the result(s) of the test in the testValues parameter.

Tests to be implemented by a component are component-dependent and are specified in the
component’s Properties Descriptor. Valid testId(s) and both input and output testValues
(properties) for the runTest operation shall at a minimum be the test properties defined in the
properties test element of the component's Properties Descriptor (refer to Appendix D Domain
Profile). The testId parameter corresponds to the XML attribute testId of the property element
test in a propertyfile.

A CF UnknownProperties exception is raised by the runTest operation. All testValues parameter
properties (i.e., test properties defined in the propertyfile(s) referenced in the component’s SPD)
shall be validated.

The runTest operation shall not execute any testing when the input testId or any of the input
testValues are not known by the component or are out of range.

3.1.3.1.3.5.1.4 Returns

This operation does not return a value.

3.1.3.1.3.5.1.5 Exceptions/Errors

The runTest operation shall raise the UnknownTest exception when there is no underlying test
implementation that is associated with the input testId given.

The runTest operation shall raise the CF UnknownProperties exception when the input parameter
testValues contains any CF DataTypes that are not known by the component’s test
implementation or any values that are out of range for the requested test. The exception
parameter invalidProperties shall contain the invalid testValues properties id(s) that are not
known by the component or the value(s) are out of range.

3-11

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.1.4 PortSupplier

3.1.3.1.4.1 Description

This interface provides the getPort operation for those components that provide ports.

3.1.3.1.4.2 UML

Figure 3-6: PortSupplier Interface UML

3.1.3.1.4.3 Types

3.1.3.1.4.3.1 UnknownPort

The UnknownPort exception is raised if an undefined port is requested.
exception UnknownPort{};

3.1.3.1.4.4 Attributes

N/A.

3.1.3.1.4.5 Operations

3.1.3.1.4.5.1 getPort

3.1.3.1.4.5.1.1 Brief Rationale

The getPort operation provides a mechanism to obtain a specific consumer or producer port. A
port supplier may contain zero-to-many consumer and producer port components. The exact
number is specified in the component’s software profile SCD (section 3.1.3.5). Multiple input
and/or output ports provide flexibility for port suppliers that manage varying priority levels and
categories of incoming and outgoing messages, provide multi-threaded message handling, or
other special message processing.

3.1.3.1.4.5.1.2 Synopsis
Object getPort (in string name) raises (UnknownPort);

3.1.3.1.4.5.1.3 Behavior

The getPort operation returns the object reference to the named port as stated in the component's
SCD.

3.1.3.1.4.5.1.4 Returns

The getPort operation shall return the CORBA object reference that is associated with the input
port name.

3.1.3.1.4.5.1.5 Exceptions/Errors

The getPort operation shall raise an UnknownPort exception if the port name is invalid.

3-12

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.1.5 PropertySet

3.1.3.1.5.1 Description

The PropertySet interface defines configure and query operations to access component
properties/attributes. The PropertySet interface UML is depicted in Figure 3-7.

3.1.3.1.5.2 UML

Figure 3-7: PropertySet Interface UML

3.1.3.1.5.3 Types

N/A.

3.1.3.1.5.3.1 InvalidConfiguration

The InvalidConfiguration exception indicates the configuration of a component has failed (no
configuration at all was done). The message is component-dependent, providing additional
information describing the reason why the error occurred. The invalidProperties returned
indicate the properties that were invalid.
exception InvalidConfiguration { string msg; Properties
invalidProperties; };

3.1.3.1.5.3.2 PartialConfiguration

The PartialConfiguration exception indicates the configuration of a Component was partially
successful. The invalidProperties returned indicate the properties that were invalid.
exception PartialConfiguration { Properties invalidProperties;
};

3.1.3.1.5.4 Attributes

N/A.

3-13

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.1.5.5 Operations

3.1.3.1.5.5.1 configure

3.1.3.1.5.5.1.1 Brief Rationale

The configure operation allows id/value pair configuration properties to be assigned to
components implementing this interface.

3.1.3.1.5.5.1.2 Synopsis
void configure (in Properties configProperties) raises
(InvalidConfiguration, PartialConfiguration);

3.1.3.1.5.5.1.3 Behavior

The configure operation shall assign values to the properties as indicated in the input
configProperties parameter. Valid properties for the configure operation shall at a minimum be
the configure readwrite and writeonly properties referenced in the component’s SPD.

3.1.3.1.5.5.1.4 Returns

This operation does not return a value.

3.1.3.1.5.5.1.5 Exceptions/Errors

The configure operation shall raise a PartialConfiguration exception when some configuration
properties were successfully set and some configuration properties were not successfully set.

The configure operation shall raise an InvalidConfiguration exception when a configuration error
occurs and no configuration properties were successfully set.

3.1.3.1.5.5.2 query

3.1.3.1.5.5.2.1 Brief Rationale

The query operation allows a component to be queried to retrieve its properties.

3.1.3.1.5.5.2.2 Synopsis
void query (inout Properties configProperties) raises
(UnknownProperties);

3.1.3.1.5.5.2.3 Behavior

The query operation shall return all component properties when the inout parameter
configProperties is zero size. The query operation shall return only those id/value pairs specified
in the configProperties parameter if the parameter is not zero size. Valid properties for the query
operation shall be all configure properties (simple properties whose kind element’s kindtype
attribute is “configure”) whose mode attribute is “readwrite” or “readonly” and any allocation
properties with an action value of "external" as referenced in the component's SPD.

3.1.3.1.5.5.2.4 Returns

This operation does not return a value.

3-14

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.1.5.5.2.5 Exceptions/Errors

The query operation shall raise the CF UnknownProperties exception when one or more
properties being requested are not known by the component.

3.1.3.1.6 Resource
3.1.3.1.6.1 Description

The Resource interface provides a common API for the control and configuration of a software
component. The Resource interface UML is depicted in Figure 3-8.

The Resource interface inherits from the LifeCycle, PropertySet, TestableObject, and
PortSupplier interfaces.

The inherited LifeCycle, PropertySet, TestableObject, and PortSupplier interface operations are
documented in their respective sections of this document.

The Resource interface may also be inherited by other application interfaces as described in the
software profile's Software Component Descriptor (SCD) file (see 3.1.3.5.2).

3.1.3.1.6.2 UML.

Figure 3-8: Resource Interface UML

3-15

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.1.6.3 Types

3.1.3.1.6.3.1 StartError

The StartError exception indicates that an error occurred during an attempt to start the resource.
The errorNumber parameter shall indicate a CF ErrorNumberType value. The message is
component-dependent, providing additional information describing the reason for the error.
exception StartError { ErrorNumberType errorNumber; string msg;
};

3.1.3.1.6.3.2 StopError

The StopError exception indicates that an error occurred during an attempt to stop the resource.
The errorNumber parameter shall indicate a CF ErrorNumberType value. The message is
component-dependent, providing additional information describing the reason for the error.
exception StopError { ErrorNumberType errorNumber; string msg;
};

3.1.3.1.6.4 Attributes

3.1.3.1.6.4.1 identifier

The readonly identifier attribute shall contain the unique identifier for a Resource instance.
readonly attribute string identifier;

3.1.3.1.6.5 Operations

3.1.3.1.6.5.1 start

3.1.3.1.6.5.1.1 Brief Rationale

The start operation is provided to command the resource implementing this interface to start
internal processing.

3.1.3.1.6.5.1.2 Synopsis
void start()raises (StartError);

3.1.3.1.6.5.1.3 Behavior

The start operation puts the resource in an operating condition.

3.1.3.1.6.5.1.4 Returns

This operation does not return a value.

3.1.3.1.6.5.1.5 Exceptions/Errors

The start operation shall raise the StartError exception if an error occurs while starting the
resource.

3.1.3.1.6.5.2 stop

3.1.3.1.6.5.2.1 Brief Rationale

The stop operation is provided to command the resource implementing this interface to stop
internal processing.

3-16

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.1.6.5.2.2 Synopsis
void stop()raises (StopError);

3.1.3.1.6.5.2.3 Behavior

The stop operation shall disable all current operations and put the resource in a non-operating
condition. The stop operation shall not inhibit subsequent configure, query, and start operations.

3.1.3.1.6.5.2.4 Returns

This operation does not return a value.

3.1.3.1.6.5.2.5 Exceptions/Errors

The stop operation shall raise the StopError exception if an error occurs while stopping the
resource.

3.1.3.1.7 ResourceFactory

3.1.3.1.7.1 Description

A resource factory is used to create and tear down a resource. The ResourceFactory interface is
designed after the Factory Design Patterns. The ResourceFactory interface UML is depicted in
Figure 3-9. The factory mechanism provides client-server isolation among resources and
provides a standard mechanism of obtaining a resource without knowing its identity. An
application is not required to use resource factories to obtain, create, or tear down resources. A
software profile specifies which application resource factories are to be used by the application
factory.

3.1.3.1.7.2 UML

Figure 3-9: ResourceFactory Interface UML

3.1.3.1.7.3 Types

3.1.3.1.7.3.1 InvalidResourceId

The InvalidResourceId exception indicates the resourceId does not reference a resource created
by this resource factory.

3-17

exception InvalidResourceId{};

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.1.7.3.2 ShutdownFailure

The ShutdownFailure exception indicates that the shutdown method failed to release the resource
factory from the CORBA environment. The message is component-dependent, providing
additional information describing why the shutdown failed.
exception ShutdownFailure { string msg; };

3.1.3.1.7.3.3 CreateResourceFailure

The CreateResourceFailure exception indicates that the createResource operation failed to create
the resource. The error number shall indicate a CF ErrorNumberType value. The message is
component-dependent, providing additional information describing the reason for the error.
exception CreateResourceFailure { ErrorNumberType errorNumber;
string msg; };

3.1.3.1.7.4 Attributes

3.1.3.1.7.4.1 identifier
The readonly identifier attribute shall contain the unique identifier for a ResourceFactory
instance.
readonly attribute string identifier;

3.1.3.1.7.5 Operations

3.1.3.1.7.5.1 createResource

3.1.3.1.7.5.1.1 Brief Rationale

The createResource operation provides the capability to create resources in the same process
space as the resource factory or to return a reference to a resource that has already been created.
This behavior is an alternative approach to the Device::execute operation for creating a resource.

3.1.3.1.7.5.1.2 Synopsis
Resource createResource (in string resourceId, in Properties
qualifiers) raises (CreateResourceFailure);

3.1.3.1.7.5.1.3 Behavior

The resourceId parameter is the identifier for a resource. The qualifiers parameter contains
values used by the resource factory in creation of the Resource. The application factory
determines the values to be supplied for the qualifiers from the description in the resource
factory’s software profile. The qualifiers may be used to identify, for example, specific subtypes
of resources created by a resource factory.

The createResource operation shall create a resource if no resource exists for the given
resourceId and shall assign the given resourceId to a new resource. If the resource already exists
for the given resourceId, the input qualifiers parameter is ignored and the resource's reference is
returned. The createResource operation shall set a reference count to one, when the resource is
initially created, or increment the reference count by one, when the resource already exists. The
reference count is used to indicate the number of times that a specific resource reference has
been given to requesting clients. This ensures that the resource factory does not release a
resource that has a reference count greater than zero (0). When multiple clients have obtained a

3-18

SCA version 2.2.2 FINAL / 15 May 2006

reference to the same resource, each client requests release of the resource when it is through
with the resource. However, the resource is not released until the release request comes from the
last client in existence.

3.1.3.1.7.5.1.4 Returns

The createResource operation shall return a reference to the created resource. If the resource
already exists, the createResource operation shall return a reference to the existing resource.

3.1.3.1.7.5.1.5 Exceptions/Errors

The createResource operation shall raise the CreateResourceFailure exception when it cannot
create the resource.

3.1.3.1.7.5.2 releaseResource

3.1.3.1.7.5.2.1 Brief Rationale

In CORBA there is client side and server side representation of a resource. The releaseResource
operation provides the mechanism of releasing the resource in the CORBA environment on the
server side when all clients are through with a specific resource. The client still has to release its
client side reference of the resource.

3.1.3.1.7.5.2.2 Synopsis
void releaseResource (in string resourceId) raises
{InvalidResourceId);

3.1.3.1.7.5.2.3 Behavior

The releaseResource operation shall decrement the reference count for the specified resource, as
indicated by the resourceId parameter. The releaseResource operation shall release the resource
from the CORBA environment and make the resource no longer available when the resource’s
reference count is zero.

3.1.3.1.7.5.2.4 Returns

This operation does not return a value.

3.1.3.1.7.5.2.5 Exceptions/Errors

The releaseResource operation shall raise the InvalidResourceId exception if an invalid
resourceId is received.

3.1.3.1.7.5.3 shutdown

3.1.3.1.7.5.3.1 Brief Rationale

In CORBA there is client side and server side representation of a resource factory. The shutdown
operation provides the mechanism for releasing the resource factory from the CORBA
environment on the server side. The client has the responsibility to release its client side
reference of the resource factory.

3.1.3.1.7.5.3.2 Synopsis
void shutdown() raises {ShutdownFailure);

3-19

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.1.7.5.3.3 Behavior

The shutdown operation shall release the resource factory from the CORBA environment and
make it unavailable to any subsequent calls to its object reference.

3.1.3.1.7.5.3.4 Returns

This operation does not return a value.

3.1.3.1.7.5.3.5 Exceptions/Errors

The shutdown operation shall raise the ShutdownFailure exception when processing errors
prevent the release of the resource factory from the CORBA environment or when all resources
have not been released from the resource factory.

3.1.3.2 Framework Control Interfaces

Framework control within a Domain is accomplished by domain management and device
management interfaces.

The management interfaces are Application, ApplicationFactory, DeviceManager and
DomainManager. These interfaces manage the registration and unregistration of applications,
devices, and device managers within the domain and the controlling of applications within the
domain. The implementation of the Application, ApplicationFactory, and DomainManager
interfaces are coupled together and are delivered together as a complete domain management
implementation and service.

Device management is accomplished by the DeviceManager interface. The device manager is
responsible for creation of logical devices and launching service applications on these logical
devices.

Framework Control Interfaces shall be implemented using the CF IDL presented in Appendix C.

3.1.3.2.1 Application
3.1.3.2.1.1 Description

The Application class provides the interface for the control, configuration, and status of an
instantiated application in the domain.

The Application interface inherits the IDL interface of Resource. A created application instance
may contain Resource components and/or non-CORBA components. The Application interface
UML is depicted in Figure 3-10.

The Application interface releaseObject operation provides the interface to release the
computing resources allocated during the instantiation of the application, and de-allocate the
devices associated with Application instance.

An instance of an Application is returned by the create operation of an instance of the
ApplicationFactory class.

3-20

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.1.2 UML

Figure 3-10: Application Interface UML

3.1.3.2.1.3 Types

3.1.3.2.1.3.1 ComponentProcessIdType

The ComponentProcessIdType defines a type for associating a component with its process ID.
struct ComponentProcessIdType
{

string componentId;
unsigned long processId;

};

3.1.3.2.1.3.2 ComponentProcessIdSequence

The ComponentProcessIdSequence type defines an unbounded sequence of components’ process
IDs.
typedef sequence <ComponentProcessIdType>
ComponentProcessIdSequence;

3.1.3.2.1.3.3 ComponentElementType

The ComponentElementType defines a type for associating a component with an element (e.g.,
naming context, implementation ID).
struct ComponentElementType
{
 string componentId;
 string elementId;
};

3-21

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.1.3.4 ComponentElementSequence

The ComponentElementSequence defines an unbounded sequence of ComponentElementType.
typedef sequence <ComponentElementType>
ComponentElementSequence;

3.1.3.2.1.4 Attributes

3.1.3.2.1.4.1 profile

The readonly profile attribute shall contain a profile element (Profile Descriptor) with a file
reference to the application’s SAD file. Files referenced within the profile are obtained via a
FileManager.
readonly attribute string profile;

3.1.3.2.1.4.2 name

This readonly name attribute shall contain the name of the created application. The
ApplicationFactory interface’s create operation name parameter provides the name content.
readonly attribute string name;

3.1.3.2.1.4.3 componentNamingContexts

The componentNamingContexts attribute shall contain the list of components’ Naming Service
Context within the application for those components using CORBA Naming Service.
readonly attribute ComponentElementSequence
componentNamingContexts;

3.1.3.2.1.4.4 componentProcessIds

The componentProcessIds attribute shall contain the list of components’ process IDs within the
Application for components that are executing on a device.
readonly attribute ComponentProcessIdSequence
componentProcessIds;

3.1.3.2.1.4.5 componentDevices

The componentDevices attribute shall contain a list of devices, which each component either
uses, is loaded on or is executed on. Each component (identified by the componentinstantiation
element in the application’s software profile) is associated with at least one device.
readonly attribute DeviceAssignmentSequence componentDevices;

3.1.3.2.1.4.6 componentImplementations

The componentImplementations attribute shall contain the list of components’ SPD
implementation IDs within the application for those components created.
readonly attribute ComponentElementSequence
componentImplementations;

3.1.3.2.1.5 General Class Behavior

The application shall delegate the implementation of the inherited Resource operations (runTest,
start, stop, configure, and query) to the Application Resource component identified by the

3-22

SCA version 2.2.2 FINAL / 15 May 2006

application’s SAD assemblycontroller element (Assembly Controller). The application shall
propagate exceptions raised by the application’s Assembly Controller’s operations. The
initialize operation shall not be propagated to the application’s components or its Assembly
Controller.

3.1.3.2.1.6 Operations

3.1.3.2.1.6.1 releaseObject

3.1.3.2.1.6.1.1 Brief Rationale

The releaseObject operation terminates execution of the application, returns all allocated
computing resources, and de-allocates the resources’ capacities in use by the devices associated
with the application. Before terminating, the application removes the message connectivity with
its associated applications (e.g., ports, resources, and logs) in the domain.

3.1.3.2.1.6.1.2 Synopsis
void releaseObject() raises (ReleaseError);

3.1.3.2.1.6.1.3 Behavior

The following behavior is in addition to the LifeCycle::releaseObject operation behavior.

The Application::releaseObject operation shall release each application component not created
by a resource factory by utilizing the component’s Resource::releaseObject operation. The
Application::releaseObject operation shall release each component created by a resource factory
via the ResourceFactory::releaseResource operation. The Application::releaseObject operation
shall terminate a resource factory when no more resources are managed by the resource factory
via the ResourceFactory::shutdown operation. The Application::releaseObject operation shall
terminate the processes / tasks on allocated executable devices belonging to each application
component by utilizing the ExecutableDevice:terminate operation.

The releaseObject operation shall de-allocate the memory associated with each application
component instance from its allocated device by utilizing the LoadableDevice::unload operation.

The releaseObject operation shall deallocate the device capacities that were allocated during
application creation. The actual devices deallocated (Device::deallocateCapacity) reflect
changes in their capacity based upon component capacity requirements deallocated from them,
which may also cause state changes for the devices.

The application shall release all object references to the components making up the application.

The releaseObject operation shall disconnect ports that were previously connected based upon
the application’s software profile.

The releaseObject operation shall disconnect consumers and producers from a CORBA Event
Service’s event channel based upon the software profile. The releaseObject operation may
destroy a CORBA Event Service’s event channel when no more consumers and producers are
connected to it.

For components (e.g., Resource, ResourceFactory) that are registered with Naming Service, the
releaseObject operation shall unbind those components and destroy the associated naming
contexts as necessary from the Naming Service.

3-23

SCA version 2.2.2 FINAL / 15 May 2006

The releaseObject operation for an application shall disconnect ports first, then release the
resources and the resource factories, then call the terminate operation, and lastly call the unload
operation on the devices.

The releaseObject operation shall, upon successful application release, write an
ADMINISTRATIVE_EVENT log record.

The releaseObject operation shall, upon unsuccessful application release, write a
FAILURE_ALARM log record.

The releaseObject operation shall send a DomainManagementObjectRemovedEventType event
to the Outgoing Domain Management event channel upon successful release of an application.
For this event,

1. The producerId is the identifier attribute of the released application.

2. The sourceId is the identifier attribute of the released application.

3. The sourceName is the name attribute of the released application.

4. The sourceCategory is “APPLICATION”.

The following steps demonstrate one scenario of the application’s behavior for the release of an
application that contains ResourceFactory behavior:

1. Client invokes releaseObject operation.

2. Disconnect Ports.

3. Release the ResourceFactory components.

4. Shutdown the ResourceFactory components.

5. Release the Resource components.

6. Terminate the components’ processes.

7. Unload the components’ executable images.

8. Change the state of the associated devices to be available, along with device(s)
memory utilization availability and processor utilization availability based upon
the Device Profile and software profile.

9. Unbind application components from Naming Service.

10. Log an Event indicating that the application was either successfully or
unsuccessfully released.

11. Remove the application reference from the applications attribute and generate an
event to indicate the application has been removed from the domain.

Figure 3-11 is a collaboration diagram depicting the behavior as described above.

3-24

SCA version 2.2.2 FINAL / 15 May 2006

Figure 3-11: Application Behavior

3.1.3.2.1.6.1.4 Returns

This operation does not return a value.

3.1.3.2.1.6.1.5 Exceptions/Errors

The releaseObject operation shall raise a ReleaseError exception when internal processing errors
prevent the successful release of any application component.

3.1.3.2.1.6.2 getPort

3.1.3.2.1.6.2.1 Brief Rationale

The getPort operation obtains an object reference to a specific visible port of the application.

3.1.3.2.1.6.2.2 Synopsis
Object getPort (in string name) raises (UnknownPort);

3.1.3.2.1.6.2.3 Behavior

The getPort operation returns object references for port names that are in the application SAD
externalports element.

3.1.3.2.1.6.2.4 Returns

The getPort operation shall return object references only for input port names that match the port
names that are in the application SAD externalports element.

3-25

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.1.6.2.5 Exceptions/Errors

The getPort operation shall raise an UnknownPort exception if the port is invalid.

3.1.3.2.2 ApplicationFactory
3.1.3.2.2.1 Description

 The ApplicationFactory interface class provides an interface to request the creation of a specific
type of application in the domain.

The ApplicationFactory interface class is designed using the Factory Design Pattern. The
software profile determines the type of application that is created by the application factory.

3.1.3.2.2.2 UML

Figure 3-12: ApplicationFactory UML

3.1.3.2.2.3 Types

3.1.3.2.2.3.1 CreateApplicationRequestError Exception

The CreateApplicationRequestError exception is raised when the parameter CF
DeviceAssignmentSequence contains one (1) or more invalid application component-to-device
assignment(s).
exception CreateApplicationRequestError {
DeviceAssignmentSequence invalidAssignment; };

3.1.3.2.2.3.2 CreateApplicationError Exception

The CreateApplicationError exception is raised when a create request is valid but the application
is unsuccessfully instantiated due to internal processing errors. The error number shall indicate a
CF ErrorNumberType value. The message is component-dependent, providing additional
information describing the reason for the error.
exception CreateApplicationError { ErrorNumberType errorNumber;
string msg; };

3.1.3.2.2.3.3 Exception InvalidInitConfiguration

The InvalidInitConfiguration exception is raised when the input initConfiguration parameter is
invalid.

3-26

SCA version 2.2.2 FINAL / 15 May 2006

exception InvalidInitConfiguration { Properties
invalidProperties; };

3.1.3.2.2.4 Attributes

3.1.3.2.2.4.1 name

The readonly name attribute contains the user-friendly name of the application instantiated by an
application factory. The name attribute shall be identical to the softwareassembly element name
attribute of the application’s Software Assembly Descriptor file.
readonly attribute string name;

3.1.3.2.2.4.2 softwareProfile

The softwareProfile attribute contains the Profile Descriptor for the application that is created by
the application factory.

The readonly softwareProfile attribute shall contain a profile element (Profile Descriptor) with a
file reference to the application’s SAD file. Files referenced within the profile are obtained via
FileManager.
readonly attribute string softwareProfile;

3.1.3.2.2.4.3 identifier

The readonly identifier attribute shall contain the unique identifier for an ApplicationFactory
instance. The identifier shall be identical to the softwareassembly element id attribute of the
application factory’s Software Assembly Descriptor file.
readonly attribute string identifier;

3.1.3.2.2.5 Operations

3.1.3.2.2.5.1 create
3.1.3.2.2.5.1.1 Brief Rationale

The create operation is used to create an application within the system domain.

The create operation provides a client interface to request the creation of an application on client
requested device(s) and/or the creation of an application in which the application factory
determines the necessary device(s) required for instantiation of the application.

3.1.3.2.2.5.1.2 Synopsis
Application create (in string name, in Properties
initConfiguration, in DeviceAssignmentSequence
deviceAssignments) raises (CreateApplicationError,
CreateApplicationRequestError, InvalidInitConfiguration);

3.1.3.2.2.5.1.3 Behavior

The create operation shall use the SPD implementation element to locate candidate devices
capable of loading and executing application software modules.

The create operation validates all component-device associations in the input deviceAssignments
parameter by verifying that the device indicated by the assignedDeviceId element provides the

3-27

SCA version 2.2.2 FINAL / 15 May 2006

necessary capacities and properties required by the component indicated by the componentId
element. Device assignments should not be given for resources created via a resource factory
since instantiation of these Resources is controlled by the creating ResourceFactory.

The create operation shall perform the comparison of allocation properties of the application to
those of each candidate device, according to the allocation property’s action element, for those
application component properties whose kindtype is allocation and whose action element is not
external.

The create operation shall use the allocateCapacity operation to perform the comparison of
allocation properties of the application to those of each candidate device for those application
component properties whose kindtype is allocation and whose action element is external

The create operation shall deallocate any capacity allocations on devices that do not satisfy the
application components allocation requirements or that are not utilized due to an unsuccessful
application creation.

The create operation shall load application modules onto devices that have been granted
successful capacity allocations and that satisfy the application components allocation
requirements.

The create operation shall execute the application software modules as specified in the
application’s Software Assembly Descriptor (SAD) file. The create operation shall use each
software module’s SPD implementation code’s stack size and priority elements, when specified,
for the execute options parameters.

The create operation shall include the mandatory execute parameters Naming Context IOR,
Name Binding, and Component Identifier, as described in this section, in the parameters
parameter of the ExecutableDevice::execute operation when the CORBA instance’s
componentinstantiation element of the SAD contains a findcomponent element with a
namingservice sub-element.

The execute parameter for the Naming Context IOR shall be a CF Properties type with an id
element set to "NAMING_CONTEXT_IOR" and a value element set to the stringified IOR of
the naming context to which the component will bind. The create operation shall create any
naming contexts that do not exist but which are required for successful binding to the Naming
Context IOR. The structure of the naming context path shall be "/ DomainName / [optional
naming context sequences]". In the naming context path, each "slash" (/) represents a separate
naming context.

The Name Binding execute parameter shall be a CF Properties type with an id element set to
"NAME_BINDING" and a value element set to a string in the format of
"ComponentName_UniqueIdentifier". The ComponentName value is the SAD
componentinstantiation findcomponent namingservice element’s name attribute. The
UniqueIdentifier is determined by the implementation. The Name Binding parameter is used by
the component to bind its object reference to the Naming Context IOR parameter.

The Component Identifier execute parameter shall be a CF Properties type with an id element set
to "COMPONENT_IDENTIFIER" and a value element set to a string in the format of
“Component_Instantiation_Identifier: Application_Name”. The
Component_Instantiation_Identifier is the componentinstantiation element id attribute for the

3-28

SCA version 2.2.2 FINAL / 15 May 2006

component in the application’s SAD file. The Application_Name field shall be identical to the
create operation’s input name parameter. The Application_Name field provides a specific
instance qualifier for executed components.

The create operation shall pass the values of the “execparam” properties of the
componentinstantiation componentproperties element contained in the SAD, as parameters to the
execute operation. The create operation passes “execparam” parameters values as string values.

Upon execution of a software module by the create operation, a Resource or a ResourceFactory
component shall register with the Naming Service. The create operation uses
"ComponentName_UniqueIdentifier" to retrieve the component’s CORBA object reference from
the Naming Context IOR.

The create operation obtains a resource in accordance with the SAD via the CORBA Naming
Service or a resource factory. The ResourceFactory object reference is obtained by using the
CORBA Naming Service. The create operation, when creating a resource from a resource
factory, shall pass the componentinstantiation componentresourcefactoryref element properties
whose kindtype element is factoryparam as the qualifiers parameter to the referenced
ResourceFactory component’s createResource operation.

The create operation shall, in order, initialize all application resources, then establish
connections for those resources, and finally configure the application component indicated by the
assemblycontroller element in the SAD. The create operation connects the ports of the
application resources with the ports of other resources within the application as well as the
devices and services they use in accordance with the SAD.

The create operation shall establish connections for an application which are specified in the
SAD domainfinder element. The create operation obtains object references to the required Port
interfaces in via PortSupplier::getPort operation. The create operation uses the SAD
connectinterface element id attribute as the unique identifier for a specific connection when
provided. The create operation creates a connection id when no SAD connectinterface element
id attribute is specified for a connection. For connections to an event channel, the create
operation shall connect a CosEventComm::PushConsumer or CosEventComm::PushSupplier
object to the event channel as specified in the SAD's domainfinder element. The create operation
shall create the specified event channel if the event channel does not exist.

The create operation shall configure the application component indicated by the
assemblycontroller element in the SAD if that component has properties with a kindtype of
“configure” and a mode of “readwrite” or “writeonly”. The create operation shall use the union
of the properties contained in the input initConfiguration parameter of the create operation and
the assembly controller’s componentinstantiation element properties with a kindtype of
“configure” and a mode of “readwrite” or “writeonly”. Values contained in the input
initConfiguration parameter shall have precedence over the values of the assembly controller’s
componentinstantiation element properties when they reference the same property.

The TestableObject::runTest operation (3.1.3.1.3.5.1), Resource::stop operation (3.1.3.1.6.5.1),
and Resource::start operation (3.1.3.1.6.5.1) are not called at start-up.

The create operation shall return an Application object reference for the created application
when the application is successfully created.

3-29

SCA version 2.2.2 FINAL / 15 May 2006

The create operation shall, upon successful application creation, write an
ADMINISTRATIVE_EVENT log record.

The create operation shall, upon unsuccessful application creation, write a FAILURE_ALARM
log record.

The create operation shall send a DomainManagementObjectAddedEventType event to the
Outgoing Domain Management event channel upon successful creation of an application. For
this event:

1. The producerId is the identifier attribute of the application factory.

2. The sourceId is the identifier attribute of the created application.

3. The sourceName is the name attribute of the created application.

4. The sourceIOR is the object reference for the created application.

5. The sourceCategory is “APPLICATION”.

The following steps demonstrate one scenario of the behavior of an application factory for the
creation of an application:

1. Client invokes the create operation.

2. Evaluate the Domain Profile for available devices that meet the application’s
memory and processor requirements, available dependent applications, and
dependent libraries needed by the application. Create an instance of an
Application, if the requested application can be created. Update the memory and
processor utilization of the devices.

3. Allocate the device(s) memory and processor utilization.

4. Load the application software modules on the devices using the appropriate
Device(s) interface provided the application software modules haven’t already
been loaded.

5. Execute the application software modules on the devices using the appropriate
Device interface as indicated by the application’s software profile.

6. Obtain the object reference (Resource or ResourceFactory) as described by the
SAD.

7. If the component obtained from the CORBA Naming Service is a resource factory
as indicated by the SAD, then narrow the object reference to be a
ResourceFactory component.

8. If the component is a ResourceFactory, then create a resource using the
ResourceFactory interface.

9. If the components obtained from the Naming Services is a resource supporting the
Resource interface as indicated by the SCDs, then narrow the components
reference to Resource components.

10. Initialize the resource.

11. Get Port object references for the resources.

3-30

SCA version 2.2.2 FINAL / 15 May 2006

12. Connect the ports that interconnect the resources’ ports together.

13. Configure the assemblycontroller component using the Resource interface.

14. Return the Application object reference and log message.

15. Generate an event to indicate the application has been added to the domain.

Figure 3-13 is a collaboration diagram depicting the behavior as described above.

Figure 3-13: ApplicationFactory Behavior

3.1.3.2.2.5.1.4 Returns

The create operation returns a duplicated Application reference for the created application.

3.1.3.2.2.5.1.5 Exceptions/Errors

The create operation shall raise the CreateApplicationRequestError exception when the input CF
DeviceAssignmentSequence parameter contains one (1) or more invalid application component
to device assignment(s).

The create operation shall raise the CreateApplicationError exception when the create request is
valid but the application cannot be successfully instantiated due to internal processing error(s).

The create operation shall raise the InvalidInitConfiguration exception when the input
initConfiguration parameter is invalid. The InvalidInitConfiguration invalidProperties parameter
shall identify the invalid properties.

3-31

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.3 DomainManager

3.1.3.2.3.1 Description

The DomainManager interface is for the control and configuration of the system domain.

The DomainManager interface operations may be logically grouped into three categories:
Human Computer Interface (HCI), Registration, and CF administration.

The HCI operations are used to configure the domain, get the domain’s capabilities (devices,
services, and applications), and initiate maintenance functions. Host operations are performed
by an HCI client capable of interfacing to the domain manager.

The registration operations are used to register / unregister device managers, device manager’s
devices, device manager’s services, and applications at startup or during run-time for dynamic
device, service, and application extraction and insertion.

The administration operations are used to access the interfaces of registered device managers and
domain manager's file manager.

3.1.3.2.3.2 UML

The DomainManager Interface UML is depicted in Figure 3-14.

Figure 3-14: DomainManager Interface UML

3-32

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.3.3 Types

3.1.3.2.3.3.1 ApplicationInstallationError

The ApplicationInstallationError exception type is raised when an application installation has not
completed correctly. The error number shall indicate a CF ErrorNumberType value. The
message is component-dependent, providing additional information describing the reason for the
error.
exception ApplicationInstallationError { ErrorNumberType
errorNumber; string msg; };

3.1.3.2.3.3.2 InvalidIdentifier

The InvalidIdentifier exception indicates an application identifier is invalid.
exception InvalidIdentifier{};

3.1.3.2.3.3.3 DeviceManagerSequence

This type defines an unbounded sequence of DeviceManager(s).
typedef sequence <DeviceManager> DeviceManagerSequence

3.1.3.2.3.3.4 ApplicationSequence

This type defines an unbounded sequence of Application(s).
typedef sequence < Application> ApplicationSequence

3.1.3.2.3.3.5 ApplicationFactorySequence

This type defines an unbounded sequence of ApplicationFactory(s).
typedef sequence < ApplicationFactory>
ApplicationFactorySequence

3.1.3.2.3.3.6 DeviceManagerNotRegistered Exception

The DeviceManagerNotRegistered exception indicates the registering device’s device manager is
not registered in the domain manager. A device’s device manager has to be registered prior to
device registration to the domain manager.
exception DeviceManagerNotRegistered{};

3.1.3.2.3.3.7 RegisterError

The RegisterError exception indicates that an internal error has occurred to prevent
DomainManager registration operations from successful completion. The error number shall
indicate a CF ErrorNumberType value. The message is component-dependent, providing
additional information describing the reason for the error.
exception RegisterError { ErrorNumberType errorNumber; string
msg; };

3.1.3.2.3.3.8 UnregisterError

The UnregisterError exception indicates that an internal error has occurred to prevent
DomainManager unregister operations from successful completion. The error number shall

3-33

SCA version 2.2.2 FINAL / 15 May 2006

indicate a CF ErrorNumberType value. The message is component-dependent, providing
additional information describing the reason for the error.
exception UnregisterError { ErrorNumberType errorNumber; string
msg; };

3.1.3.2.3.3.9 ApplicationUninstallationError

The ApplicationUninstallationError exception type is raised when the uninstallation of an
application has not completed correctly. The error number shall indicate a CF ErrorNumberType
value. The message is component-dependent, providing additional information describing the
reason for the error.
exception ApplicationUninstallationError { ErrorNumberType
errorNumber; string msg; };

3.1.3.2.3.3.10 InvalidEventChannelName

The InvalidEventChannelName exception indicates that a domain manager was not able to locate
the event channel.
exception InvalidEventChannelName{};

3.1.3.2.3.3.11 AlreadyConnected

The AlreadyConnected exception indicates that a registering consumer is already connected to
the specified event channel.
exception AlreadyConnected{};

3.1.3.2.3.3.12 NotConnected

The NotConnected exception indicates that the unregistering consumer was not connected to the
specified event channel.
exception NotConnected{};

3.1.3.2.3.3.13 ApplicationAlreadyInstalled

The ApplicationAlreadyInstalled exception indicates that the application being installed is
already installed.
exception ApplicationAlreadyInstalled{};

3.1.3.2.3.4 Attributes.

3.1.3.2.3.4.1 deviceManagers

The deviceManagers attribute is read-only containing a sequence of registered device managers
in the domain. The readonly deviceManagers attribute shall contain a list of registered device
managers that have registered with the domain manager. The domain manager shall write an
ADMINISTRATIVE_EVENT log to a domain manager’s log, when the deviceManagers
attribute is obtained by a client.
readonly attribute DeviceManagerSequence deviceManagers;

3-34

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.3.4.2 applications

The applications attribute is read-only containing a sequence of instantiated Applications in the
domain. The readonly applications attribute shall contain the list of Applications that have been
instantiated. The domain manager shall write an ADMINISTRATIVE_EVENT log record to a
domain manager’s log, when the application’s attribute is obtained by a client.
readonly attribute ApplicationSequence applications;

3.1.3.2.3.4.3 applicationFactories

The readonly applicationFactories attribute shall contain a list with one application factory per
application (SAD file and associated files) successfully installed (i.e. no exception raised). The
domain manager shall write an ADMINISTRATIVE_EVENT log record to a domain manager’s
log, when the applicationFactories attribute is obtained by a client.
readonly attribute ApplicationFactorySequence
applicationFactories;

3.1.3.2.3.4.4 fileMgr

The readonly fileMgr attribute shall contain the domain manager file manager. The domain
manager shall write an ADMINISTRATIVE_EVENT log record to a domain manager’s log,
when the fileMgr attribute is obtained by a client.
readonly attribute FileManager fileMgr;

3.1.3.2.3.4.5 domainManagerProfile

The domainManagerProfile attribute contains the domain manager’s Profile Descriptor.

The readonly domainManagerProfile attribute shall contain a profile element (Profile Descriptor)
with a file reference to the DomainManager Configuration Descriptor (DMD) file. Files
referenced within the profile are obtained via the domain manager’s FileManager.
readonly attribute string domainManagerProfile;

3.1.3.2.3.4.6 identifier

The readonly identifier attribute shall contain a unique identifier for a DomainManager instance.
The identifier shall be identical to the domainmanagerconfiguration element id attribute of the
domain manager’s Descriptor (DMD) file.
readonly attribute string identifier;

3.1.3.2.3.5 General Class Behavior

The domain manager shall register itself with the CORBA Naming Service during component
construction. The domain manager shall create a naming context using "/DomainName" as the id
attribute to the input name parameter, and "" (Null string) as the kind attribute. The domain
manager shall create a name binding to the created naming context using "/DomainName" as the
id attribute to the input name parameter, and "" (Null string) as the kind attribute, where
DomainName is identical to the name attribute of the domain manager’s DMD
domainmanagerconfiguration element and the input object parameter is the domain manager
object reference. [6]

3-35

SCA version 2.2.2 FINAL / 15 May 2006

Since a log service is not a required component, a domain manager implementation may, or may
not have access to a log. However, if log service(s) are available, a DomainManager
implementation may use one or more of them. The logs utilized by the DomainManager
implementation shall be defined in the DMD.

The domain manager shall begin to use a service specified in the DMD once the service is
successfully registered with the domain manager via the registerDeviceManager or
registerService operations.

The domain manager shall create its own FileManager component that consists of all registered
device manager’s FileSystems.

Upon system startup, the domain manager shall restore application factories for applications that
were previously installed by the DomainManager::installApplication operation. The domain
manager shall add the restored application factories to the DomainManager applicationFactories
attribute.

The domain manager shall create the Incoming Domain Management and Outgoing Domain
Management event channels.

3.1.3.2.3.6 Operations

3.1.3.2.3.6.1 registerDeviceManager

3.1.3.2.3.6.1.1 Brief Rationale

The registerDeviceManager operation is used to register a device manager, its device(s), and its
services. Software profiles may be obtained from the device manager's FileSystem.

3.1.3.2.3.6.1.2 Synopsis
void registerDeviceManager (in DeviceManager deviceMgr) raises
(InvalidObjectReference, InvalidProfile, RegisterError);

3.1.3.2.3.6.1.3 Behavior

The registerDeviceManager operation verifies that the input deviceMgr parameter is a not a nil
CORBA object reference.

The registerDeviceManager operation shall add the device manager indicated by the input
deviceMgr parameter to the DomainManager deviceManagers attribute, if it does not already
exist. The registerDeviceManager operation shall add the input device manager’s registered
devices and each registered device’s attributes (e.g., identifier, softwareProfile, allocation
properties, etc.) to the domain manager. The domain manager associates the input device
manager’s registered devices with the device manager in order to support the
unregisterDeviceManager operation.

The registerDeviceManager operation shall add all the services contained in the registering
device manager’s registeredServices attribute to the domain manager. The
registerDeviceManager operation associates the device manager indicated by the input
deviceMgr parameter with its registered services in the domain manager in order to support the
unregisterDeviceManager operation.

The registerDeviceManager operation shall return without exception and not register a new
device manager when that device manager, indicated by the input deviceMgr parameter, has the

3-36

SCA version 2.2.2 FINAL / 15 May 2006

same identifier attribute as a previously registered device manager and the reference to the
registered device manager refers to an existing object.

The registerDeviceManager operation shall register the new device manager indicated by the
input deviceMgr parameter, when the previously registered device manager has the same
identifier attribute as the new device manager and the reference to the registered device manager
refers to a nonexistent object.

The registerDeviceManager operation shall write an ADMINISTRATIVE_EVENT log record
when reference to the registered device manager refers to a nonexistent object.

The registerDeviceManager operation shall establish any connections for the device manager
indicated by the input deviceMgr parameter, which are specified in the connections element of
the device manager’s Device Configuration Descriptor (DCD) file, that are possible with the
current set of registered devices and services. Connections not currently possible are left
unconnected pending future device / service registrations.

For connections established for a CORBA Event Service’s event channel, the
registerDeviceManager operation shall connect a CosEventComm::PushConsumer or
CosEventComm::PushSupplier object to the event channel as specified in the DCD’s
domainfinder element. If the event channel does not exist, the registerDeviceManager operation
shall create the event channel.

The registerDeviceManager operation shall obtain all the software profiles from the registering
device manager's file systems.

The registerDeviceManager operation shall mount the device manager's file system to the
domain manager’s file manager. The mounted FileSystem name shall have the format,
“/DomainName/HostName”, where DomainName is the name of the domain and HostName is
the input deviceMgr’s label attribute.

The registerDeviceManager operation shall, upon unsuccessful device manager registration,
write a FAILURE_ALARM log record to a domain manager’s Log.

The registerDeviceManager operation shall send a DomainManagementObjectAddedEventType
event to the Outgoing Domain Management event channel upon successful registration of a
device manager. For this event,

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the registered device manager.

3. The sourceName is the label attribute of the registered device manager.

4. The sourceIOR is the object reference for the registered device manager.

5. The sourceCategory is “DEVICE_MANAGER”.

The following UML sequence diagram (Figure 3-15) illustrates the domain manager’s behavior
for the registerDeviceManager operation.

3-37

SCA version 2.2.2 FINAL / 15 May 2006

Figure 3-15: DomainManager Sequence Diagram for registerDeviceManager Operation

3.1.3.2.3.6.1.4 Returns

This operation does not return a value.

3-38

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.3.6.1.5 Exceptions/Errors

The registerDeviceManager operation shall raise the CF InvalidObjectReference exception when
the input parameter deviceMgr contains an invalid reference to a DeviceManager interface.

The registerDeviceManager operation shall raise the CF InvalidProfile exception when the
device manager’s DCD file and the DCD’s referenced files do not exist.

The registerDeviceManager operation shall raise the RegisterError exception when an internal
error exists which causes an unsuccessful registration.

3.1.3.2.3.6.2 registerDevice

3.1.3.2.3.6.2.1 Brief Rationale

The registerDevice operation is used to register a device for a specific device manager with the
domain manager.

3.1.3.2.3.6.2.2 Synopsis
void registerDevice (in Device registeringDevice, in
DeviceManager registeredDeviceMgr) raises
(InvalidObjectReference, InvalidProfile,
DeviceManagerNotRegistered, RegisterError);

3.1.3.2.3.6.2.3 Behavior

The registerDevice operation shall verify that the input parameters, registeringDevice and
registeredDeviceMgr, are not nil CORBA object references.

The registerDevice operation shall add the device indicated by the input registeringDevice
parameter and the device’s attributes to the domain manager, if it does not already exist.

The registerDevice operation shall return without exception and not register a new device when
that device, indicated by the input registeringDevice parameter, has the same identifier attribute
as a previously registered device and the reference to the registered device refers to an existing
object.

The registerDevice operation shall register the new device indicated by the input
registeringDevice parameter, when the previously registered device has the same identifier
attribute as the new device and the reference to the registered device refers to a nonexistent
object.

The registerDevice operation shall write an ADMINISTRATIVE_EVENT log record when
reference to the registered device refers to a nonexistent object.

The registerDevice operation associates the device indicated by the input registeringDevice
parameter with the device manager indicated by the input registeredDeviceMgr parameter when
the device manager is a valid registered DeviceManager in the domain manager.

The registerDevice operation shall establish any pending connections from previously registered
device managers when the registering device completes these connections.

The registerDevice operation shall write an ADMINISTRATIVE_EVENT log record to a
domain manager log upon successful device registration.

3-39

SCA version 2.2.2 FINAL / 15 May 2006

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager
log, when the CF InvalidProfile exception is raised.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager
log when the DeviceManagerNotRegistered exception is raised.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager
log when the CF InvalidObjectReference exception is raised.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager
log when the RegisterError exception is raised.

The registerDevice operation shall send a DomainManagementObjectAddedEventType event to
the Outgoing Domain Management event channel, upon successful registration of a device. For
this event,

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the registered device.

3. The sourceName is the label attribute of the registered device.

4. The sourceIOR is the object reference for the registered device.

5. The sourceCategory is “DEVICE”.

The following UML sequence diagram (Figure 3-16) illustrates the domain manager's behavior
for the registerDevice operation.

3-40

SCA version 2.2.2 FINAL / 15 May 2006

Figure 3-16: DomainManager Sequence Diagram for registerDevice Operation

3.1.3.2.3.6.2.4 Returns

This operation does not return a value.

3.1.3.2.3.6.2.5 Exceptions/Errors

The registerDevice operation shall raise the CF InvalidProfile exception when:

1. The device's SPD file and the SPD’s referenced files do not exist, or

2. The device profile does not reference allocation properties.

The registerDevice operation shall raise a DeviceManagerNotRegistered exception when the
input registeredDeviceMgr parameter is not a nil reference and the referenced device manager is
not registered with the domain manager.

The registerDevice operation shall raise the CF InvalidObjectReference exception when input
parameters registeringDevice or registeredDeviceMgr contains an invalid reference.

The registerDevice operation shall raise the RegisterError exception when an internal error exists
which causes an unsuccessful registration.

3-41

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.3.6.3 installApplication

3.1.3.2.3.6.3.1 Brief Rationale

The installApplication operation is used to install new application software in the domain.

3.1.3.2.3.6.3.2 Synopsis
void installApplication (in string profileFileName) raises
(InvalidProfile, InvalidFileName, ApplicationInstallationError,
ApplicationAlreadyInstalled);

3.1.3.2.3.6.3.3 Behavior

The input profileFileName parameter is the absolute pathname of the application SAD.

The installApplication operation shall verify the existence of the application's SAD file and all
files upon which the SAD depends, within the domain manager's file manager.

The installApplication operation shall write an ADMINISTRATIVE_EVENT log record to a
domain manager's log, upon successful application installation.

The installApplication operation shall, upon unsuccessful application installation, write a
FAILURE_ALARM log record to a domain manager's log.

The installApplication operation shall send a DomainManagementObjectAddedEventType event
to the Outgoing Domain Management event channel, upon successful installation of an
application. For this event,

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the installed application factory.

3. The sourceName is the name attribute of the installed application factory.

4. The sourceIOR is the object reference for the installed application factory.

5. The sourceCategory is “APPLICATION_FACTORY”.

3.1.3.2.3.6.3.4 Returns

This operation does not return a value.

3.1.3.2.3.6.3.5 Exceptions/Errors

The installApplication operation shall raise the ApplicationInstallationError exception when the
installation of the application file(s) was not successfully completed.

The installApplication operation shall raise the CF InvalidFileName exception when the input
SAD file or any of the SAD’s referenced filenames do not exist in the file system identified by
the absolute path of the input profileFileName parameter. The installApplication operation shall
log a FAILURE_ALARM log record to a domain manager's Log with a message consisting of
"installApplication::invalid file is xxx", where "xxx" is the input or referenced filename, when
the CF InvalidFileName exception occurs.

The installApplication operation shall raise the CF InvalidProfile exception when any referenced
property definition is missing.

3-42

SCA version 2.2.2 FINAL / 15 May 2006

The installApplication operation shall write a FAILURE_ALARM log record to a domain
manager's log when the CF InvalidProfile exception is raised. The value of the logData attribute
of this record is "installApplication::invalid Profile is yyy", where "yyy" is the input or
referenced file name.

The installApplication operation shall raise the ApplicationAlreadyInstalled exception when the
softwareassembly element id attribute of the referenced application is the same as a previously
registered application.

3.1.3.2.3.6.4 unregisterDeviceManager

3.1.3.2.3.6.4.1 Brief Rationale

The unregisterDeviceManager operation is used to unregister a DeviceManager component from
the domain manager. A device manager may be unregistered during run-time for dynamic
extraction or maintenance of the device manager.

3.1.3.2.3.6.4.2 Synopsis
void unregisterDeviceManager (in DeviceManager deviceMgr) raises
(InvalidObjectReference, UnregisterError);

3.1.3.2.3.6.4.3 Behavior

The unregisterDeviceManager operation shall unregister a DeviceManager component from the
DomainManager.

The unregisterDeviceManager operation shall release all device(s) and service(s) associated with
the device manager that is being unregistered.

The unregisterDeviceManager operation shall disconnect the established connections (including
those made to the CORBA Event Service event channels) of the unregistering device manager as
well as for its registered devices and services. Connections broken as a result of the
unregisterDeviceManager operation shall be considered as “pending” for future connections
when the component to which the device manager or its registered devices and services were
connected still exists. The unregisterDeviceManager operation may destroy the CORBA Event
Service channel when no more consumers and producers are connected to it.

The unregisterDeviceManager operation shall unmount all device manager's file systems from
its file manager.

The unregisterDeviceManager operation shall, upon the successful unregistration of a device
manager, write an ADMINISTRATIVE_EVENT log record to a domain manager's log.

The unregisterDeviceManager operation shall, upon unsuccessful unregistration of a device
manager, write a FAILURE_ALARM log record to a domain manager's log.

The unregisterDeviceManager operation shall send a
DomainManagementObjectRemovedEventType event to the Outgoing Domain Management
event channel, upon successful unregistration of a device manager. For this event,

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the unregistered device manager.

3. The sourceName is the label attribute of the unregistered device manager.

3-43

SCA version 2.2.2 FINAL / 15 May 2006

4. The sourceCategory is “DEVICE_MANAGER”.

3.1.3.2.3.6.4.4 Returns

This operation does not return a value.

3.1.3.2.3.6.4.5 Exceptions/Errors

The unregisterDeviceManager operation shall raise the CF InvalidObjectReference when the
input deviceMgr parameter contains an invalid reference to a DeviceManager interface.

The unregisterDeviceManager operation shall raise the UnregisterError exception when an
internal error exists which causes an unsuccessful unregistration.

3.1.3.2.3.6.5 unregisterDevice

3.1.3.2.3.6.5.1 Brief Rationale

The unregisterDevice operation is used to remove a device entry from the domain manager for a
specific device manager.

3.1.3.2.3.6.5.2 Synopsis
void unregisterDevice (in Device unregisteringDevice) raises
(InvalidObjectReference, UnregisterError)

3.1.3.2.3.6.5.3 Behavior

The unregisterDevice operation shall remove a device entry from the domain manager.

The unregisterDevice operation shall release (client-side CORBA release) the
unregisteringDevice from the domain manager.

The unregisterDevice operation shall disconnect the established connections (including those
made to the CORBA Event Service event channels) of the unregistering device. Connections
broken as a result of the unregisterDevice operation shall be considered as “pending” for future
connections when the component to which the device was connected still exists.

The unregisterDevice operation may destroy the CORBA Event Service event channel when no
more consumers and producers are connected to it.

The unregisterDevice operation shall, upon the successful unregistration of a device, write an
ADMINISTRATIVE_EVENT log record to a domain manager's log.

The unregisterDevice operation shall, upon unsuccessful unregistration of a device, write a
FAILURE_ALARM log record to a domain manager's log.

The unregisterDevice operation shall send a DomainManagementObjectRemovedEventType
event to the Outgoing Domain Management event channel, upon successful unregistration of a
device. For this event,

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the unregistered device.

3. The sourceName is the label attribute of the unregistered device.

4. The sourceCategory is “DEVICE”.

3-44

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.3.6.5.4 Returns

This operation does not return a value.

3.1.3.2.3.6.5.5 Exceptions/Errors

The unregisterDevice operation shall raise the CF InvalidObjectReference exception when the
input parameter contains an invalid reference to a Device interface.

The unregisterDevice operation shall raise the UnregisterError exception when an internal error
exists which causes an unsuccessful unregistration.

3.1.3.2.3.6.6 uninstallApplication

3.1.3.2.3.6.6.1 Brief Rationale

The uninstallApplication operation is used to uninstall an application factory from the domain.

3.1.3.2.3.6.6.2 Synopsis
void uninstallApplication (in string applicationId)raises
(InvalidIdentifier, ApplicationUninstallationError);

3.1.3.2.3.6.6.3 Behavior

The ApplicationId parameter is the softwareassembly element id attribute of the
ApplicationFactory’s Software Assembly Descriptor file.

The uninstallApplication operation shall make the ApplicationFactory unavailable from the
domain manager (i.e. its services no longer provided for the application).

The uninstallApplication operation shall, upon successful uninstall of an application, write an
ADMINISTRATIVE_EVENT log record to a domain manager's log.

The uninstallApplication operation shall, upon unsuccessful uninstall of an application, write a
FAILURE_ALARM log record to a domain manager's log.

The uninstallApplication operation shall send a DomainManagementObjectRemovedEventType
event to the Outgoing Domain Management event channel, upon the successful uninstallation of
an application. For this event,

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the uninstalled application factory.

3. The sourceName is the name attribute of the uninstalled application factory.

4. The sourceCategory is “APPLICATION_FACTORY”.

3.1.3.2.3.6.6.4 Returns

This operation does not return a value.

3.1.3.2.3.6.6.5 Exceptions/Errors

The uninstallApplication operation shall raise the InvalidIdentifier exception when the
ApplicationId is invalid.

The uninstallApplication operation shall raise the ApplicationUninstallationError exception
when an internal error causes an unsuccessful uninstallation of the application.

3-45

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.3.6.7 registerService

3.1.3.2.3.6.7.1 Brief Rationale

The registerService operation is used to register a service for a specific device manager with the
domain manager.

3.1.3.2.3.6.7.2 Synopsis
void registerService (in Object registeringService, in
DeviceManager registeredDeviceMgr, in string name) raises
(InvalidObjectReference, DeviceManagerNotRegistered,
RegisterError);

3.1.3.2.3.6.7.3 Behavior

The registerService operation shall verify the input registeringService and registeredDeviceMgr
are valid object references.

The registerService operation shall verify the input registeredDeviceMgr has been previously
registered with the domain manager.

The registerService operation shall add the registeringService’s object reference and the
registeringService’s name to the domain manager, if the name for the type of service being
registered does not exist within the domain manager. The registerService operation shall return
without exception and not register a new service when that service, indicated by the input
registeringService parameter, has the same name and type as a previously registered service and
the reference to the registered service refers to an existing object.

The registerService operation shall register the new service, indicated by the input
registeringService parameter, when the previously registered service has the same name and type
as the new service and the reference to the registered service refers to a nonexistent object.

The registerService operation shall write an ADMINISTRATIVE_EVENT log record when
reference to the registered service refers to a nonexistent object.

The registerService operation shall associate the input registeringService parameter with the
input registeredDeviceMgr parameter in the domain manager, when the registeredDeviceMgr
parameter indicates a device manager that is registered with the domain manager.

The registerService operation shall establish any pending connections from previously registered
device managers when the registering service completes these connections.

The registerService operation shall, upon successful service registration, write an
ADMINISTRATIVE_EVENT log record to a domain manager's log.

The registerService operation shall, upon unsuccessful service registration, write a
FAILURE_ALARM log record to a domain manager's log.

The registerService operation shall send a DomainManagementObjectAddedEventType event to
the Outgoing Domain Management event channel, upon successful registration of a service. For
this event,

1. The producerId is the identifier attribute of the domain manager.

3-46

SCA version 2.2.2 FINAL / 15 May 2006

2. The sourceId is the identifier attribute of the componentinstantiation element
associated with the registered service.

3. The sourceName is the input name parameter for the registering service.

4. The sourceIOR is the object reference for the registered service.

5. The sourceCategory is “SERVICE”.

The following UML sequence diagram (Figure 3-17) illustrates the domain manager's behavior
for the registerService operation.

Figure 3-17: DomainManager Sequence Diagram for registerService Operation

3.1.3.2.3.6.7.4 Returns

This operation does not return a value.

3.1.3.2.3.6.7.5 Exceptions/Errors.

The registerService operation shall raise a DeviceManagerNotRegistered exception when the
input registeredDeviceMgr parameter is not a nil reference and is not registered with the domain
manager.

The registerService operation shall raise the CF InvalidObjectReference exception when input
parameters registeringService or registeredDeviceMgr contains an invalid reference.

The registerService operation shall raise the RegisterError exception when an internal error
exists which causes an unsuccessful registration.

3-47

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.3.6.8 unregisterService

3.1.3.2.3.6.8.1 Brief Rationale

The unregisterService operation is used to remove a service entry from the domain manager for a
specific device manager.

3.1.3.2.3.6.8.2 Synopsis
void unregisterService (in Object unregisteringService, in
string name) raises (InvalidObjectReference, UnregisterError);

3.1.3.2.3.6.8.3 Behavior

The unregisterService operation shall disconnect the established connections (including those
made to the CORBA Event Service event channels) of the unregistering service indicated by the
input unregisteringService parameter. Connections broken as a result of the unregisterService
operation shall be considered as “pending” for future connections when the component to which
the service was connected still exists.

The unregisterService operation shall remove the unregisteringService entry specified by the
input name parameter from the domain manager.

The unregisterService operation shall release (client-side CORBA release) the
unregisteringService from the domain manager.

The unregisterService operation shall, upon the successful unregistration of a service, write an
ADMINISTRATIVE_EVENT log record to a domain manager's log.

The unregisterService operation shall, upon unsuccessful unregistration of a service, write a
FAILURE_ALARM log record to a domain manager's log.

The unregisterService operation shall send a DomainManagementObjectRemovedEventType
event to the Outgoing Domain Management event channel, upon successful unregistration of a
service. For this event,

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the componentinstantiation element
associated with the unregistered service.

3. The sourceName is the input name parameter for the unregistering service.

4. The sourceCategory is “SERVICE”.

3.1.3.2.3.6.8.4 Returns

This operation does not return a value.

3.1.3.2.3.6.8.5 Exceptions/Errors

The unregisterService operation shall raise the CF InvalidObjectReference exception when the
input parameter contains an invalid reference to a service interface.

The unregisterService operation shall raise the UnregisterError exception when an internal error
exists which causes an unsuccessful unregistration.

3-48

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.3.6.9 registerWithEventChannel

3.1.3.2.3.6.9.1 Brief Rationale

The registerWithEventChannel operation is used to connect a consumer to a domain’s event
channel.

3.1.3.2.3.6.9.2 Synopsis
void registerWithEventChannel (in Object registeringObject, in
string registeringId, in string eventChannelName) raises
(InvalidObjectReference, InvalidEventChannelName,
AlreadyConnected);

3.1.3.2.3.6.9.3 Behavior

The registerWithEventChannel operation shall connect the object identified by the input
registeringObject parameter to an event channel as specified by the input eventChannelName
parameter.

3.1.3.2.3.6.9.4 Returns

This operation does not return a value.

3.1.3.2.3.6.9.5 Exceptions/Errors

The registerWithEventChannel operation shall raise the CF InvalidObjectReference exception
when the input registeringObject parameter contains an invalid reference to a
CosEventComm::PushConsumer interface.

The registerWithEventChannel operation shall raise the InvalidEventChannelName exception
when the input eventChannelName parameter contains an invalid event channel name.

The registerWithEventChannel operation shall raise AlreadyConnected exception when the input
parameter contains a connection to the event channel for the input registeringId parameter.

3.1.3.2.3.6.10 unregisterFromEventChannel

3.1.3.2.3.6.10.1 Brief Rationale

The unregisterFromEventChannel operation is used to disconnect a consumer from a domain’s
event channel.

3.1.3.2.3.6.10.2 Synopsis
void unregisterFromEventChannel (in string unregisteringId, in
string eventChannelName) raises (InvalidEventChannelName,
NotConnected);

3.1.3.2.3.6.10.3 Behavior

The unregisterFromEventChannel operation shall disconnect a registered component from the
event channel as identified by the input parameters.

3.1.3.2.3.6.10.4 Returns

This operation does not return a value.

3-49

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.3.6.10.5 Exceptions/Errors

The unregisterFromEventChannel operation shall raise the InvalidEventChannelName exception
when the input eventChannelName parameter contains an invalid reference to an event channel.

The unregisterFromEventChannel operation shall raise the NotConnected exception when the
input parameter unregisteringId parameter is not connected to specified input event channel.

3.1.3.2.4 DeviceManager

3.1.3.2.4.1 Description

The DeviceManager interface is used to manage a set of logical devices and services. The
interface for a DeviceManager is based upon its attributes, which are:

1. Device Configuration Profile - a mapping of physical device locations to
meaningful labels (e.g., audio1, serial1, etc.), along with the devices and services
to be deployed.

2. File System - the FileSystem associated with this device manager.

3. Device Manager Identifier - the instance-unique identifier for this device
manager.

4. Device Manager Label - the meaningful name given to this device manager.

5. Registered Devices - a list of devices that have registered with this device
manager.

6. Registered Services - a list of services that have registered with this device
manager.

3.1.3.2.4.2 UML

Figure 3-18: DeviceManager UML

3-50

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.4.3 Types

This section describes the types defined in the interface DeviceManager.

3.1.3.2.4.3.1 ServiceType

This structure provides the object reference and name of a service that has registered with the
device manager.
struct ServiceType
{
 Object serviceObject;
 string serviceName;
};

3.1.3.2.4.3.2 ServiceSequenceType

This type provides an unbounded sequence of ServiceType structures for services that have
registered with the device manager.
typedef sequence <ServiceType> ServiceSequence;

3.1.3.2.4.4 Attributes

3.1.3.2.4.4.1 identifier

The readonly identifier attribute shall contain the instance-unique identifier for a device
manager. The identifier shall be identical to the deviceconfiguration element id attribute of the
device manager's Device Configuration Descriptor (DCD) file.
readonly attribute string identifier;

3.1.3.2.4.4.2 label

The readonly label attribute shall contain the device manager's label. The label is the meaningful
name given to a device manager.
readonly attribute string label;

3.1.3.2.4.4.3 fileSys

The readonly fileSys attribute shall contain the FileSystem associated with this device manager.
readonly attribute FileSystem fileSys;

3.1.3.2.4.4.4 deviceConfigurationProfile

The readonly deviceConfigurationProfile attribute contains the device manager’s profile
descriptor.

The readonly deviceConfigurationProfile attribute shall contain a profile element (Profile
Descriptor) with a file reference to the device manager’s Device Configuration Descriptor
(DCD) file. Files referenced within the profile are obtained via the FileSystem.
readonly attribute string deviceConfigurationProfile;

3-51

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.4.4.5 registeredDevices

The readonly registeredDevices attribute shall contain a list of devices that have registered with
this device manager or a sequence length of zero if no devices have registered with the device
manager.
readonly attribute DeviceSequence registeredDevices;

3.1.3.2.4.4.6 registeredServices

The readonly registeredServices attribute shall contain a list of services that have registered with
this device manager or a sequence length of zero if no services have registered with the device
manager.
readonly attribute ServiceSequence registeredServices;

3.1.3.2.4.5 General Behavior

The device manager upon start up shall register itself with a domain manager. This requirement
allows the system to be developed where at a minimum only the DomainManager’s object
reference needs to be known. A device manager shall use the information in the device
manager’s DCD for determining:

1. Services to be deployed for this device manager (for example, log(s)),

2. Devices to be created for this device manager (when the DCD deployondevice
element is not specified then the DCD componentinstantiation element is
deployed on the same hardware device as the device manager),

3. Devices to be deployed on (executing on) another device,

4. Devices to be aggregated to another device,

5. Mount point names for file systems,

6. The DeviceManager’s identifier attribute value which is the DCD’s id attribute
value, and

7. The DeviceManager’s label attribute value which is the DCD’s name attribute
value.

The device manager shall create FileSystem components implementing the FileSystem interface
for each OS file system. If multiple file systems are to be created, the device manager shall
mount created file systems to a FileManager component (widened to a FileSystem through the
FileSys attribute). The mount points used for the created file systems are identical to the values
identified in the filesystemnames element of the device manager’s Device Configuration
Descriptor. Each mounted file system name shall be unique within the device manager.

The device manager shall supply execute operation parameters for a device consisting of:

1. Device manager IOR – The ID is “DEVICE_MGR_IOR” and the value is a string
that is the DeviceManager stringified IOR.

2. Profile Name – The ID is “PROFILE_NAME” and the value is a CORBA string
that is the full mounted file system file path name.

3-52

SCA version 2.2.2 FINAL / 15 May 2006

3. Device Identifier – The ID is “DEVICE_ID” and the value is a string that
corresponds to the DCD componentinstantiation id attribute.

4. Device Label – The ID is “DEVICE_LABEL” and the value is a string that
corresponds to the DCD componentinstantiation usage element. This parameter
is only used when the DCD componentinstantiation usage element is specified.

5. Composite Device IOR - The ID is “Composite_DEVICE_IOR” and the value is
a string that is an AggregateDevice stringified IOR. This parameter is only used
when the DCD componentinstantiation element represents the child device of
another componentinstantiation element.

6. The execute (“execparam”) properties as specified in the DCD for a
componentinstantiation element. The device manager shall pass the
componentinstantiation element “execparam” properties that have values as
parameters. The device manager shall pass “execparam” parameters’ IDs and
values as string values.

The device manager shall use the componentinstantiation element’s SPD implementation code’s
stacksize and priority elements, when specified, for the execute operation options parameters.

The device manager shall initialize and then configure logical devices that are started by the
device manager, after they have successfully registered with the device manager. The device
manager shall configure a DCD’s componentinstantiation element provided the
componentinstantiation element has “configure” readwrite or writeonly properties with values.
Figure 3-19 depicts a device manager startup scenario.

If a service is deployed by the device manager, the device manager shall supply execute
operation parameters consisting of:

1. Device manager IOR – The ID is “DEVICE_MGR_IOR” and the value is a string
that is the DeviceManager stringified IOR.

2. Service Name – The ID is “SERVICE_NAME” and the value is a string that
corresponds to the DCD componentinstantiation usagename element.

3. The execute (“execparam”) properties as specified in the DCD for a
componentinstantiation element. The device manager shall pass the
componentinstantiation element “execparam” properties that have values as
parameters. The device manager shall pass “execparam” parameters’ IDs and
values as string values.

3-53

SCA version 2.2.2 FINAL / 15 May 2006

Figure 3-19: Device Manager Startup Scenario

3.1.3.2.4.6 Operations

3.1.3.2.4.6.1 registerDevice

3.1.3.2.4.6.1.1 Brief Rationale

The registerDevice operation provides the mechanism to register a device with a device
manager.

3.1.3.2.4.6.1.2 Synopsis
void registerDevice (in Device registeringDevice) raises
(InvalidObjectReference);

3.1.3.2.4.6.1.3 Behavior

The registerDevice operation shall add the input registeringDevice to the DeviceManager
registeredDevices attribute when the input registeringDevice does not already exist in the
registeredDevices attribute. The registeringDevice is ignored when duplicated.

3-54

SCA version 2.2.2 FINAL / 15 May 2006

The registerDevice operation shall register the registeringDevice with the domain manager when
the device manager has already registered to the domain manager and the registeringDevice has
been successfully added to the DeviceManager registeredDevices attribute.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain
manager's log, upon unsuccessful registration of a device to the DeviceManager
registeredDevices attribute.

3.1.3.2.4.6.1.4 Returns

This operation does not return any value.

3.1.3.2.4.6.1.5 Exceptions/Errors

The registerDevice operation shall raise the CF InvalidObjectReference when the input
registeringDevice is a nil CORBA object reference.

3.1.3.2.4.6.2 unregisterDevice

3.1.3.2.4.6.2.1 Brief Rationale

The unregisterDevice operation unregisters a device from a device manager.

3.1.3.2.4.6.2.2 Synopsis
void unregisterDevice (in Device registeredDevice) raises
(InvalidObjectReference);

3.1.3.2.4.6.2.3 Behavior

The unregisterDevice operation shall remove the input registeredDevice from the
DeviceManager registeredDevices attribute. The unregisterDevice operation shall unregister the
input registeredDevice from the domain manager when the input registeredDevice is registered
with the device manager and the device manager is not shutting down.

The unregisterDevice operation shall write a FAILURE_ALARM log record, when it cannot
successfully remove a registeredDevice from the DeviceManager registeredDevices attribute.

3.1.3.2.4.6.2.4 Returns

This operation does not return any value.

3.1.3.2.4.6.2.5 Exceptions/Errors

The unregisterDevice operation shall raise the CF InvalidObjectReference when the input
registeredDevice is a nil CORBA object reference or does not exist in the DeviceManager’s
registeredDevices attribute.

3.1.3.2.4.6.3 registerService

3.1.3.2.4.6.3.1 Brief Rationale

The registerService operation provides the mechanism to register a service with a device
manager.

3.1.3.2.4.6.3.2 Synopsis
void registerService (in Object registeringService, in string
name) raises (InvalidObjectReference);

3-55

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.4.6.3.3 Behavior

The registerService operation shall add the input registeringService to the DeviceManager
registeredServices attribute when the input registeringService does not already exist in the
registeredServices attribute. The registeringService is ignored when duplicated.

The registerService operation shall register the registeringService with the domain manager
when the device manager has already registered to the domain manager and the
registeringService has been successfully added to the DeviceManager’s registeredServices
attribute.

The registerService operation shall write a FAILURE_ALARM log record, upon unsuccessful
registration of a service to the DeviceManager registeredServices attribute.

3.1.3.2.4.6.3.4 Returns

This operation does not return any value.

3.1.3.2.4.6.3.5 Exceptions/Errors

The registerService operation shall raise the CF InvalidObjectReference exception when the
input registeringService is a nil CORBA object reference.

3.1.3.2.4.6.4 unregisterService

3.1.3.2.4.6.4.1 Brief Rationale.

The unregisterService operation unregisters a service from a device manager.

3.1.3.2.4.6.4.2 Synopsis
void unregisterService (in Object unregisteringService, in
string name) raises (InvalidObjectReference);

3.1.3.2.4.6.4.3 Behavior

The unregisterService operation shall remove the input registered service specified by the input
name parameter from the DeviceManager::registeredServices attribute. The unregisterService
operation shall unregister the input unregistering service from the domain manager when the
device manager is not in the SHUTTING_DOWN state.

The unregisterService operation shall write a FAILURE_ALARM log record, when it cannot
successfully remove a registeredService from the DeviceManager registeredServices attribute.

3.1.3.2.4.6.4.4 Returns

This operation does not return any value.

3.1.3.2.4.6.4.5 Exceptions/Errors

The unregisterService operation shall raise the CF InvalidObjectReference when the input
unregistering service is a nil CORBA object reference or does not exist in the DeviceManager
registeredServices attribute.

3.1.3.2.4.6.5 shutdown
3.1.3.2.4.6.5.1 Brief Rationale

The shutdown operation provides the mechanism to terminate a device manager.

3-56

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.2.4.6.5.2 Synopsis
void shutdown();

3.1.3.2.4.6.5.3 Behavior

The shutdown operation shall unregister the device manager from the domain manager.

The shutdown operation shall perform releaseObject on all of the device manager's registered
devices (DeviceManager registeredDevices attribute).

The shutdown operation shall cause the device manager to be unavailable (i.e. released from the
CORBA environment and its process terminated on the OS), when all of the device manager's
registered devices are unregistered from the device manager.

3.1.3.2.4.6.5.4 Returns

This operation does not return any value.

3.1.3.2.4.6.5.5 Exceptions/Errors

This operation does not raise any exceptions.

3.1.3.2.4.6.6 getComponentImplementationId.

3.1.3.2.4.6.6.1 Brief Rational

The getComponentImplementationId operation returns the SPD implementation ID that the
DeviceManager interface used to create a component.

3.1.3.2.4.6.6.2 Synopsis
string getComponentImplementationId (in string
componentInstantiationId);

3.1.3.2.4.6.6.3 Behavior

The getComponentImplementationId operation returns the SPD implementation element’s id
attribute that matches the id attribute of the SPD implementation element used to create the
component specified by the input componentInstantiationId parameter.

3.1.3.2.4.6.6.4 Returns

The getComponentImplementationId operation shall return the SPD implementation element’s id
attribute that matches the SPD implementation element used to create the component identified
by the input componentInstantiationId parameter. The getComponentImplementationId
operation shall return an empty string when the input componentInstantiationId parameter does
not match the id attribute of any SPD implementation element used to create the component.

3.1.3.2.4.6.6.5 Exceptions/Errors

This operation does not raise any exceptions.

3.1.3.3 Base Device Interfaces

The device interfaces are for the implementation and management of logical devices within the
domain. The devices within the domain may be simple devices with no loadable, executable, or

3-57

SCA version 2.2.2 FINAL / 15 May 2006

aggregate device behavior, or devices with a combination of these behaviors. The device
interfaces are Device, LoadableDevice and ExecutableDevice.

Base Device Interfaces shall be implemented using the CF IDL presented in Appendix C.

3.1.3.3.1 Device
3.1.3.3.1.1 Description

A device is a type of resource and has all the requirements associated with the Resource
interface. The Device interface defines additional capabilities and attributes for any logical
device in the domain. A logical device is a software abstraction for a physical hardware device
and provides the following attributes and operations:

1. Software Profile Attribute – The SPD referenced by this profile element (Profile
Descriptor) defines the logical device capabilities (data/command uses and
provides ports, configure and query properties, capacity properties, status
properties, etc.), which could be a subset of the hardware device’s capabilities.

2. State Management & Status Attributes – This information describes the
administrative, usage, and operational states of the device.

3. Capacity Operations - In order to use a device, certain capacities (e.g., memory,
performance, etc.) are obtained from the device. A device may have multiple
capacities which need to be allocated, since each device has its own unique
capacity model which is described in the associated software profile.

3.1.3.3.1.2 UML

The Device Interface UML is depicted in Figure 3-20.

Figure 3-20: Device Interface UML

3-58

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.3.1.3 Types

3.1.3.3.1.3.1 InvalidState

The InvalidState exception indicates that the device is not capable of the behavior being
attempted due to the state the device is in.
exception InvalidState {string msg;};

3.1.3.3.1.3.2 InvalidCapacity

The InvalidCapacity exception returns the capacities that are not valid for this device.
exception InvalidCapacity {string msg; Properties capacities;};

3.1.3.3.1.3.3 AdminType

This is a CORBA IDL enumeration type that defines a device's administrative states. The
administrative state indicates the permission to use or prohibition against using the device.
enum AdminType
{
 LOCKED,
 SHUTTING_DOWN,
 UNLOCKED
};

3.1.3.3.1.3.4 OperationalType

This is a CORBA IDL enumeration type that defines a device’s operational states. The
operational state indicates whether or not the object is functioning.
enum OperationalType
{
 ENABLED,
 DISABLED
};

3.1.3.3.1.3.5 UsageType

This is a CORBA IDL enumeration type that defines the device’s usage states. The usage state
indicates which of the following states a device is in:

IDLE – not in use

ACTIVE – in use, with capacity remaining for allocation, or

BUSY – in use, with no capacity remaining for allocation
enum UsageType
{
 IDLE,
 ACTIVE,
 BUSY
};

3-59

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.3.1.4 Attributes

3.1.3.3.1.4.1 usageState.

The readonly usageState attribute shall contain the device’s usage state (IDLE, ACTIVE, or
BUSY). UsageState indicates whether or not a device is actively in use at a specific instant, and
if so, whether or not it has spare capacity for allocation at that instant.

The device shall send a StateChangeEventType event to the Incoming Domain Management
event channel, whenever the usageState attribute changes. For this event,

1. The producerId field is the identifier attribute of the device.

2. The sourceId field is the identifier attribute of the device.

3. The stateChangeCategory field is “USAGE_STATE_EVENT”.

4. The stateChangeFrom field is the value of the usageState attribute before the state
change

5. The stateChangeTo field is the value of the usageState attribute after the state
change.

readonly attribute UsageType usageState;

3.1.3.3.1.4.2 adminState

The administrative state indicates the permission to use or prohibition against using the device.
The adminState attribute shall contain the device’s admin state value. The adminState attribute
shall only allow the setting of LOCKED and UNLOCKED values, where setting “LOCKED” is
only effective when the adminState attribute value is UNLOCKED, and setting “UNLOCKED”
is only effective when the adminState attribute value is LOCKED or SHUTTING_DOWN.
Illegal state transitions commands are ignored.

The adminState attribute, upon being commanded to be LOCKED, shall transition from the
UNLOCKED to the SHUTTING_DOWN state and set the adminState to LOCKED for its entire
aggregation of devices (if it has any). The adminState shall then transition to the LOCKED state
when the device’s usageState is IDLE and its entire aggregation of devices are LOCKED. Refer
to Figure 3-21 for an illustration of the above state behavior.

The device shall send a StateChangeEventType event to the Incoming Domain Management
event channel, whenever the adminState attribute changes. For this event,

1. The producerId field is the identifier attribute of the device.

2. The sourceId field is the identifier attribute of the device.

3. The stateChangeCategory field is “ADMINISTRATIVE_STATE_EVENT”.

4. The stateChangeFrom field is the value of the adminState attribute before the
state change

5. The stateChangeTo field is the value of the adminState attribute after the state
change.

attribute AdminType adminState;

3-60

SCA version 2.2.2 FINAL / 15 May 2006

Figure 3-21: State Transition Diagram for adminState

3.1.3.3.1.4.3 operationalState

The readonly operationalState attribute shall contain the device’s operational state (ENABLED
or DISABLED). The operational state indicates whether or not the device is functioning.

The device shall send a StateChangeEventType event to the Incoming Domain Management
event channel, whenever the operationalState attribute changes. For this event,

1. The producerId field is the identifier attribute of the device.

2. The sourceId field is the identifier attribute of the device.

3. The stateChangeCategory field is “OPERATIONAL_STATE_EVENT”.

4. The stateChangeFrom field is the value of the operationalState attribute before
the state change.

5. The stateChangeTo field is the value of the operationalState attribute after the
state change.

readonly attribute OperationalType operationalState;

3.1.3.3.1.4.4 softwareProfile

The softwareProfile attribute contains the profile descriptor for this device.

The readonly softwareProfile attribute shall contain a profile element (Profile Descriptor) with a
file reference to the SPD file. Files referenced within the profile are obtained via the
FileManager.

3-61

SCA version 2.2.2 FINAL / 15 May 2006

readonly attribute string softwareProfile;

3.1.3.3.1.4.5 label

The readonly label attribute shall contain the device’s label. The label attribute is the meaningful
name given to a device. The attribute could convey location information within the system (e.g.,
audio1, serial1, etc.).
readonly attribute string label;

3.1.3.3.1.4.6 compositeDevice

The readonly compositeDevice attribute shall contain the object reference of the aggregate
device when this device is a parent device. The readonly compositeDevice attribute shall contain
a nil CORBA object reference when this device is not a parent device.
readonly attribute AggregateDevice compositeDevice;

3.1.3.3.1.5 Operations

3.1.3.3.1.5.1 allocateCapacity
3.1.3.3.1.5.1.1 Brief Rationale

The allocateCapacity operation provides the mechanism to request and allocate capacity from
the Device.

3.1.3.3.1.5.1.2 Synopsis
boolean allocateCapacity (in Properties capacities) raises
(InvalidCapacity, InvalidState);

3.1.3.3.1.5.1.3 Behavior

The allocateCapacity operation shall reduce the current capacities of the device based upon the
input capacities parameter, when the device’s adminState is UNLOCKED, device’s
operationalState is ENABLED, and device’s usageState is not BUSY.

The allocateCapacity operation shall set the Device’s usageState attribute to BUSY, when the
device determines that it is not possible to allocate any further capacity. The allocateCapacity
operation shall set the usageState attribute to ACTIVE, when capacity is being used and any
capacity is still available for allocation (reference Figure 3-22).

The allocateCapacity operation shall only accept properties for the input capacities parameter
which are simple properties whose kindtype is allocation and whose action element is external
contained in the component’s SPD.

3.1.3.3.1.5.1.4 Returns

The allocateCapacity operation shall return TRUE, if the capacities have been allocated, or
FALSE, if not allocated.

3.1.3.3.1.5.1.5 Exceptions/Errors

The allocateCapacity operation shall raise the InvalidCapacity exception, when the input
capacities parameter contains invalid properties or when attributes of those CF Properties contain
an unknown id or a value of the wrong data type.

3-62

SCA version 2.2.2 FINAL / 15 May 2006

The allocateCapacity operation shall raise the InvalidState exception, when the Device’s
adminState is not UNLOCKED or operationalState is DISABLED.

3.1.3.3.1.5.2 deallocateCapacity

3.1.3.3.1.5.2.1 Brief Rationale

The deallocateCapacity operation provides the mechanism to return capacities back to the
device, making them available to other users.

3.1.3.3.1.5.2.2 Synopsis
void deallocateCapacity (in Properties capacities) raises
(InvalidCapacity, InvalidState);

3.1.3.3.1.5.2.3 Behavior

The deallocateCapacity operation shall adjust the current capacities of the device based upon the
input capacities parameter.

The deallocateCapacity operation shall set the usageState attribute to ACTIVE when, after
adjusting capacities, any of the device’s capacities are still being used.

The deallocateCapacity operation shall set the usageState attribute to IDLE when, after adjusting
capacities, none of the device’s capacities are still being used.

The deallocateCapacity operation shall set the adminState attribute to LOCKED as specified in
3.1.3.2.4.4.2.

Figure 3-22: State Transition Diagram for allocateCapacity and deallocateCapacity

3-63

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.3.1.5.2.4 Returns

This operation does not return any value.

3.1.3.3.1.5.2.5 Exceptions/Errors

The deallocateCapacity operation shall raise the InvalidCapacity exception, when the capacity
ID is invalid or the capacity value is the wrong type. The InvalidCapacity exception msg
parameter describes the reason for the exception.

The deallocateCapacity operation shall raise the InvalidState exception, when the device’s
adminState is LOCKED or operationalState is DISABLED.

3.1.3.3.1.5.3 releaseObject

3.1.3.3.1.5.3.1 Description

This section describes additional release behavior for a logical device.

3.1.3.3.1.5.3.2 Synopsis
void releaseObject() raises (ReleaseError);

3.1.3.3.1.5.3.3 Behavior

The following behavior is in addition to the LifeCycle::releaseObject operation behavior.

The releaseObject operation shall assign the LOCKED state to the Device adminState attribute,
when the Device adminState attribute is UNLOCKED.

The releaseObject operation shall call the releaseObject operation on all those devices that are
contained within the AggregateDevice devices attribute, when this device is a parent device.

The releaseObject operation shall cause the removal of the device from the Device
compositeDevice attribute, when this device is a child device.

The releaseObject operation shall cause the device to be unavailable and released from the
CORBA environment when the Device adminState attribute transitions to LOCKED. The
transition to the LOCKED state signifies that the Device usageState attribute is IDLE and, if the
device is a parent device, that its child devices have been removed.

The releaseObject operation shall unregister its device from its device manager.

The following three figures (Figure 3-23, Figure 3-24, and Figure 3-25) depict different release
scenarios depending on the type of device and the state the device is in.

3-64

SCA version 2.2.2 FINAL / 15 May 2006

Figure 3-23: Release Aggregated Device Scenario

3-65

SCA version 2.2.2 FINAL / 15 May 2006

Figure 3-24: Release Composite Device Scenario

3-66

SCA version 2.2.2 FINAL / 15 May 2006

Figure 3-25: Release Composite & Aggregated Device Scenario

3.1.3.3.1.5.3.4 Returns

The releaseObject operation does not return a value.

3.1.3.3.1.5.3.5 Exceptions/Errors

The releaseObject operation shall raise the ReleaseError exception when releaseObject is not
successful in releasing a logical device due to internal processing errors that occurred within the
device being released.

3.1.3.3.2 LoadableDevice
3.1.3.3.2.1 Description

This interface extends the Device interface by adding software loading and unloading behavior to
a device.

3-67

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.3.2.2 UML

The LoadableDevice Interface UML is depicted in Figure 3-26.

Figure 3-26: LoadableDevice Interface UML

3.1.3.3.2.3 Types

3.1.3.3.2.3.1 LoadType

The LoadType defines the type of load to be performed. The load types are in accordance with
the code element within the softpkg element’s implementation element, which is defined in
Appendix D.2.1.
enum LoadType
{
 KERNEL_MODULE,
 DRIVER,
 SHARED_LIBRARY,
 EXECUTABLE
};

3.1.3.3.2.3.2 InvalidLoadKind

The InvalidLoadKind exception indicates that the device is unable to load the type of file
designated by the loadKind parameter.

3-68

SCA version 2.2.2 FINAL / 15 May 2006

exception InvalidLoadKind{};

3.1.3.3.2.3.3 LoadFail.

The LoadFail exception indicates that the load operation failed due to device dependent reasons.
The LoadFail exception indicates that an error occurred during an attempt to load the device. The
error number shall indicate a CF ErrorNumberType. The message is component-dependent,
providing additional information describing the reason for the error.
exception LoadFail { ErrorNumberType errorNumber; string msg; };

3.1.3.3.2.4 Attributes

N/A

3.1.3.3.2.5 Operations

3.1.3.3.2.5.1 load

3.1.3.3.2.5.1.1 Brief Rationale

The load operation provides the mechanism for loading software on a specific device. The
loaded software may be subsequently executed on the device, if the device is an executable
device.

3.1.3.3.2.5.1.2 Synopsis
void load (in FileSystem fs, in string fileName, in LoadType
loadKind) raises (InvalidState, InvalidLoadKind,
InvalidFileName, LoadFail);

3.1.3.3.2.5.1.3 Behavior

The load operation shall load the file identified by the input filename parameter on the device
based upon the input loadKind parameter. The input filename parameter is a pathname relative
to the file system identified by the input FileSystem parameter

The load operation shall support the load types as stated in the device’s software profile
LoadType allocation properties.

Multiple loads of the same file as indicated by the input fileName parameter shall not result in an
exception. However, the load operation should account for this multiple load so that the unload
operation behavior can be performed.

3.1.3.3.2.5.1.4 Returns

This operation does not return any value.

3.1.3.3.2.5.1.5 Exceptions/Errors

The load operation shall raise the InvalidState exception if upon entry the Device's adminState
attribute is either LOCKED or SHUTTING_DOWN or its operationalState attribute is
DISABLED.

The load operation shall raise the InvalidLoadKind exception when the input loadKind
parameter is not supported.

3-69

SCA version 2.2.2 FINAL / 15 May 2006

The load operation shall raise the CF InvalidFileName exception when the file designated by the
input filename parameter cannot be found.

The load operation shall raise the LoadFail exception when an attempt to load the device is
unsuccessful.

3.1.3.3.2.5.2 unload

3.1.3.3.2.5.2.1 Brief Rationale

The unload operation provides the mechanism to unload software that is currently loaded.

3.1.3.3.2.5.2.2 Synopsis
void unload (in string fileName) raises (InvalidState,
InvalidFileName);

3.1.3.3.2.5.2.3 Behavior

The unload operation shall unload the file identified by the input fileName parameter from the
device when the number of unload requests matches the number of load requests for the
indicated file.

3.1.3.3.2.5.2.4 Returns

This operation does not return a value.

3.1.3.3.2.5.2.5 Exceptions/Errors

The unload operation shall raise the InvalidState exception if upon entry the device's adminState
attribute is LOCKED or its operationalState attribute is DISABLED.

The unload operation shall raise the CF InvalidFileName exception when the file designated by
the input filename parameter cannot be found.

3.1.3.3.3 ExecutableDevice
3.1.3.3.3.1 Description

This interface extends the LoadableDevice interface by adding execute and terminate behavior to
a device.

3.1.3.3.3.2 UML

The ExecutableDevice Interface UML is depicted in Figure 3-27.

3-70

SCA version 2.2.2 FINAL / 15 May 2006

Figure 3-27: ExecutableDevice Interface UML

3.1.3.3.3.3 Types

3.1.3.3.3.3.1 InvalidProcess

The InvalidProcess exception indicates that a process, as identified by the processId parameter,
does not exist on this device. The errorNumber parameter shall indicate a CF ErrorNumberType
value. The message is component-dependent, providing additional information describing the
reason for the error.
exception InvalidProcess { ErrorNumberType errorNumber; string
msg; };

3.1.3.3.3.3.2 InvalidFunction

The InvalidFunction exception indicates that a function, as identified by the input name
parameter, hasn’t been loaded on this device.
exception InvalidFunction{};

3.1.3.3.3.3.3 ProcessID_Type

The ProcessID_Type defines a process number within the system. The process number is unique
to the Processor operating system that created the process.
typedef long ProcessID_Type;

3.1.3.3.3.3.4 InvalidParameters

The InvalidParameters exception indicates the input parameters are invalid on the execute
operation. The InvalidParameters exception is raised when there are invalid execute parameters.
The invalidParms parameter is a list of invalid parameters specified in the execute operation.
exception InvalidParameters { Properties invalidParms; };

3.1.3.3.3.3.5 InvalidOptions

The InvalidOptions exception indicates the input options are invalid on the execute operation.
The invalidOpts parameter is a list of invalid options specified in the execute operation.

3-71

SCA version 2.2.2 FINAL / 15 May 2006

exception InvalidOptions { Properties invalidOpts; };

3.1.3.3.3.3.6 STACK_SIZE_ID

The STACK_SIZE_ID is the identifier for the ExecutableDevice::execute operation options
parameter. The value for a stack size shall be an unsigned long.
Constant string STACK_SIZE_ID = “STACK_SIZE”;

3.1.3.3.3.3.7 PRIORITY_ID

The PRIORITY_ID is the identifier for the ExecutableDevice::execute operation options
parameters. The value for a priority shall be an unsigned long.
Constant string PRIORITY_ID = “PRIORITY”;

3.1.3.3.3.3.8 ExecuteFail

The ExecuteFail exception indicates that the execute operation failed due to device dependent
reasons. The ExecuteFail exception indicates that an error occurred during an attempt to invoke
the execute function on the device. The error number shall indicate a CF ErrorNumberType
value. The message is component-dependent, providing additional information describing the
reason for the error.
exception ExecuteFail { ErrorNumberType errorNumber; string msg;
};

3.1.3.3.3.4 Attributes

N/A.

3.1.3.3.3.5 Operations

3.1.3.3.3.5.1 execute

3.1.3.3.3.5.1.1 Brief Rationale

The execute operation provides the mechanism for starting up and executing a software
process/thread on a device.

3.1.3.3.3.5.1.2 Synopsis
ProcessID_Type execute (in string name, in Properties options,
in Properties parameters) raises (InvalidState, InvalidFunction,
InvalidParameters, InvalidOptions, InvalidFileName,
ExecuteFail);

3.1.3.3.3.5.1.3 Behavior

The execute operation shall execute the function or file identified by the input name parameter
using the input parameters and options parameters. Whether the input name parameter is a
function or a file name is device-implementation-specific.

The execute operation shall convert the input parameters (id/value string pairs) parameter to the
standard argv of the POSIX exec family of functions, where argv(0) is the function name. The
execute operation shall map the input parameters parameter to argv starting at index 1 as follows,
argv (1) maps to input parameters (0) id and argv (2) maps to input parameters (0) value and so
forth. The execute operation passes argv through the operating system “execute” function.

3-72

SCA version 2.2.2 FINAL / 15 May 2006

The execute operation input options parameters are STACK_SIZE_ID and PRIORITY_ID. The
execute operation shall use these options, when specified, to set the operating system’s
process/thread stack size and priority, for the executable image of the given input name
parameter.

3.1.3.3.3.5.1.4 Returns

The execute operation shall return a unique process ID for the process that it created.

3.1.3.3.3.5.1.5 Exceptions/Errors

The execute operation shall raise the InvalidState exception if upon entry the device's adminState
attribute is either LOCKED or SHUTTING_DOWN or its operationalState attribute is
DISABLED.

The execute operation shall raise the InvalidFunction exception when the function indicated by
the input name parameter does not exist for the device.

The execute operation shall raise the CF InvalidFileName exception when the file name
indicated by the input name parameter does not exist for the device.

The execute operation shall raise the InvalidParameters exception when the input parameter ID
or value attributes are not valid strings.

The execute operation shall raise the InvalidOptions exception when the input options parameter
does not comply with sections 3.1.3.3.3.3.6 STACK_SIZE_ID and 3.1.3.3.3.3.7 PRIORITY_ID.

The execute operation shall raise the ExecuteFail exception when the operating system “execute”
function for the device is not successful.

3.1.3.3.3.5.2 terminate

3.1.3.3.3.5.2.1 Brief Rationale

The terminate operation provides the mechanism for terminating the execution of a
process/thread on a specific device that was started up with the execute operation.

3.1.3.3.3.5.2.2 Synopsis
void terminate (in ProcessID_Type processId) raise
(InvalidProcess, InvalidState);

3.1.3.3.3.5.2.3 Behavior

The terminate operation shall terminate the execution of the process/thread designated by the
processId input parameter on the device.

3.1.3.3.3.5.2.4 Returns

This operation does not return a value.

3.1.3.3.3.5.2.5 Exceptions/Errors

The terminate operation shall raise the InvalidState exception if upon entry the device's
adminState attribute is LOCKED or its operationalState attribute is DISABLED.

The terminate operation shall raise the InvalidProcess exception when the process Id does not
exist for the device.

3-73

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.3.4 AggregateDevice

3.1.3.3.4.1 Description

The AggregateDevice interface provides the required behavior that is needed to add and remove
child devices from a parent device. This interface may be provided via inheritance or as a
“provides port” for any device that is used as a parent device. Child devices use this interface to
add or remove themselves to a parent device when being created or torn-down.

3.1.3.3.4.2 UML

The AggregateDevice Interface UML is depicted in Figure 3-28.

Figure 3-28: AggregateDevice Interface UML

3.1.3.3.4.3 Types

N/A.

3.1.3.3.4.4 Attributes

3.1.3.3.4.4.1 devices

The readonly devices attribute shall contain a list of devices that have been added to this device
or a sequence length of zero if the device has no aggregation relationships with other devices.
readonly attribute DeviceSequence devices;

3.1.3.3.4.5 Operations

3.1.3.3.4.5.1 addDevice

3.1.3.3.4.5.1.1 Brief Rationale

The addDevice operation provides the mechanism to associate a device with another device.
When a device changes state or it is being torn down, its associated devices are affected.

3.1.3.3.4.5.1.2 Synopsis
void addDevice (in Device associatedDevice) raises
(InvalidObjectReference);

3-74

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.3.4.5.1.3 Behavior

The addDevice operation shall add the input associatedDevice parameter to the
AggregateDevice’s devices attribute when the associatedDevice does not exist in the devices
attribute. The associatedDevice is ignored when duplicated.

The addDevice operation shall write a FAILURE_ALARM log record, upon unsuccessful adding
of an associatedDevice to the AggregateDevice’s devices attribute.

3.1.3.3.4.5.1.4 Returns

This operation does not return any value.

3.1.3.3.4.5.1.5 Exceptions/Errors

The addDevice operation shall raise the CF InvalidObjectReference when the input
associatedDevice parameter is a nil CORBA object reference.

3.1.3.3.4.5.2 removeDevice

3.1.3.3.4.5.2.1 Brief Rationale

The removeDevice operation provides the mechanism to disassociate a device from another
device.

3.1.3.3.4.5.2.2 Synopsis
void removeDevice (in Device associatedDevice) raises
(InvalidObjectReference);

3.1.3.3.4.5.2.3 Behavior

The removeDevice operation shall remove the input associatedDevice parameter from the
AggregateDevice’s devices attribute.

The removeDevice operation shall write a FAILURE_ALARM log record, upon unsuccessful
removal of the associatedDevice from the AggregateDevice devices attribute.

3.1.3.3.4.5.2.4 Returns

This operation does not return any value.

3.1.3.3.4.5.2.5 Exceptions/Errors

The removeDevice operation shall raise the CF InvalidObjectReference when the input
associatedDevice parameter is a nil CORBA object reference or does not exist in the
AggregateDevice devices attribute.

3.1.3.4 Framework Services Interfaces

Framework Services Interfaces shall be implemented using the CF IDL presented in Appendix C.

3.1.3.4.1 File
3.1.3.4.1.1 Description

The File interface provides the ability to read and write files residing within a compliant,
distributed file system. A file can be thought of conceptually as a sequence of octets with a
current filePointer describing where the next read or write will occur. This filePointer points to

3-75

SCA version 2.2.2 FINAL / 15 May 2006

the beginning of the file upon construction of the file object. The File interface is modeled after
the POSIX/C file interface.

3.1.3.4.1.2 UML

Figure 3-29: File Interface UML

3.1.3.4.1.3 Types

3.1.3.4.1.3.1 IOException

The IOException exception indicates an error occurred during a read or write operation to a file.
The error number shall indicate a CF ErrorNumberType value. The message is component-
dependent, providing additional information describing the reason for the error.
exception IOException { ErrorNumberType errorNumber; string msg;
};

3.1.3.4.1.3.2 InvalidFilePointer

The InvalidFilePointer exception indicates the file pointer is out of range based upon the current
file size.
exception InvalidFilePointer{};

3.1.3.4.1.4 Attributes

3.1.3.4.1.4.1 fileName

The readonly fileName attribute shall contain the pathname used as the input fileName parameter
of the FileSystem::create operation when the file was created .
readonly attribute string fileName;

3.1.3.4.1.4.2 filePointer

The readonly filePointer attribute shall contain the current file position. The filePointer attribute
value dictates where the next read or write will occur.

3-76

readonly attribute unsigned long filePointer;

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.4.1.5 Operations

3.1.3.4.1.5.1 read

3.1.3.4.1.5.1.1 Brief Rationale

Applications require the read operation in order to retrieve data from remote files.

3.1.3.4.1.5.1.2 Synopsis
void read (out OctetSequence data, in unsigned long length)
raises (IOException);

3.1.3.4.1.5.1.3 Behavior

The read operation shall read, from the referenced file, the number of octets specified by the
input length parameter and advance the value of the filePointer attribute by the number of octets
actually read. The read operation shall read less than the number of octets specified in the input-
length parameter, when an end of file is encountered.

3.1.3.4.1.5.1.4 Returns

The read operation shall return via the out Message parameter a CF OctetSequence that equals
the number of octets actually read from the File. If the filePointer attribute value reflects the end
of the File, the read operation shall return a zero-length CF OctetSequence.

3.1.3.4.1.5.1.5 Exceptions/Errors

The read operation shall raise the IOException when a read error occurs.

3.1.3.4.1.5.2 write

3.1.3.4.1.5.2.1 Brief Rationale

Applications require the write operation in order to write data to remote files.

3.1.3.4.1.5.2.2 Synopsis
void write (in OctetSequence data) raises (IOException);

3.1.3.4.1.5.2.3 Behavior

The write operation shall write data to the file referenced. The write operation shall increment
the filePointer attribute to reflect the number of octets written, when the operation is successful.
If the write is unsuccessful, the value of the filePointer attribute shall maintain or be restored to
its value prior to the write operation call. If the file was opened using the FileSystem::open
operation with an input read_Only parameter value of TRUE, writes to the file are considered to
be in error.

3.1.3.4.1.5.2.4 Returns

This operation does not return any value.

3.1.3.4.1.5.2.5 Exceptions/Errors

The write operation shall raise the IOException when a write error occurs.

3-77

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.4.1.5.3 sizeOf

3.1.3.4.1.5.3.1 Brief Rationale

An application may need to know the size of a file in order to determine memory allocation
requirements.

3.1.3.4.1.5.3.2 Synopsis
unsigned long sizeOf() raises (FileException);

3.1.3.4.1.5.3.3 Behavior

There is no significant behavior beyond the behavior described by the following section.

3.1.3.4.1.5.3.4 Returns

The sizeOf operation shall return the number of octets stored in the file.

3.1.3.4.1.5.3.5 Exceptions/Errors

The sizeOf operation shall raise the CF FileException when a file-related error occurs (e.g., file
does not exist anymore).

3.1.3.4.1.5.4 close

3.1.3.4.1.5.4.1 Brief Rationale

The close operation is needed in order to release file resources once they are no longer needed.

3.1.3.4.1.5.4.2 Synopsis
void close() raises (FileException);

3.1.3.4.1.5.4.3 Behavior

The close operation shall release any OE file resources associated with the component. The
close operation shall make the file unavailable to the component.

3.1.3.4.1.5.4.4 Returns

This operation does not return any value.

3.1.3.4.1.5.4.5 Exceptions/Errors.

The close operation shall raise the CF FileException when it cannot successfully close the file.

3.1.3.4.1.5.5 setFilePointer

3.1.3.4.1.5.5.1 Brief Rationale

The setFilePointer operation positions the file pointer where the next read or write will occur.

3.1.3.4.1.5.5.2 Synopsis
void setFilePointer (in unsigned long filePointer) raises
(InvalidFilePointer, FileException);

3.1.3.4.1.5.5.3 Behavior

The setFilePointer operation shall set the filePointer attribute value to the input filePointer.

3-78

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.4.1.5.5.4 Returns

This operation does not return any value.

3.1.3.4.1.5.5.5 Exceptions/Errors

The setFilePointer operation shall raise the CF FileException when the file pointer for the
referenced file cannot be set to the value of the input filePointer parameter.

The setFilePointer operation shall raise the InvalidFilePointer exception when the value of the
filePointer parameter exceeds the file size.

3.1.3.4.2 FileSystem
3.1.3.4.2.1 Description

The FileSystem interface defines CORBA operations that enable remote access to a physical file
system. (see Figure 3-30)

The files stored on a file system may be plain files or directories. Valid individual filenames and
directory names shall be 40 characters or less. Valid characters for a filename or directory name
are the 62 alphanumeric characters (Upper, and lowercase letters and the numbers 0 to 9) in
addition to the “.” (period), “_” (underscore) and “-“ (hyphen) characters. The filenames “.”
(“dot”) and “..” (“dot-dot”) are invalid in the context of a file system.

Valid pathnames are structured according to the POSIX specification whose valid characters
include the “/” (forward slash) character in addition to the valid filename characters. A valid
pathname may consist of a single filename. A valid pathname shall not exceed 1024 characters.

3.1.3.4.2.2 UML

Figure 3-30: FileSystem Interface UML

3-79

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.4.2.3 Types

3.1.3.4.2.3.1 UnknownFileSystemProperties.

The UnknownFileSystemProperties exception indicates a set of properties unknown by the
component.
exception UnknownFileSystemProperties { properties
invalidProperties; };

3.1.3.4.2.3.2 fileSystemProperties Query Constants

Constants are defined to be used for the query operation (see section 3.1.3.4.2.5.9).
const string SIZE = “SIZE”;
const string AVAILABLE_SPACE = “AVAILABLE_SPACE”;

3.1.3.4.2.3.3 FileInformationType

The FileInformationType indicates the information returned for a file. Not all the fields in the
FileInformationType are applicable for all file systems. At a minimum, the file system shall
support name, kind, and size information for a file. Examples of other file properties that may be
specified are created time, modified time, and last access time.
struct FileInformationType
{
 string name;
 FileType kind;
 unsigned long long size;
 Properties fileProperties;
};

The name element of the FileInformationType indicates the simple name of the file. The kind
element of the FileInformationType indicates the type of the file entry. The size element of the
FileInformationType indicates the size in octets.

3.1.3.4.2.3.4 FileInformationSequence

The FileInformationSequence type defines an unbounded sequence of FileInformationTypes.
typedef sequence<FileInformationType>FileInformationSequence;

3.1.3.4.2.3.5 FileType

The FileType indicates the type of file entry. A file system may have PLAIN or DIRECTORY
files and mounted file systems contained in a FileSystem.
enum FileType
{
 PLAIN,
 DIRECTORY,
 FILE_SYSTEM
};

3-80

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.4.2.3.6 CREATED_TIME_ID

The fileProperies element of the FileInformationType may be used to indicate the time a file was
created. For this property, the identifier is CREATED_TIME_ID and the value shall be an
unsigned long long data type containing the number of seconds since 00:00:00 UTC, Jan. 1,
1970.
Constant string CREATED_TIME_ID = “CREATED_TIME”;

3.1.3.4.2.3.7 MODIFIED_TIME_ID

The fileProperies element of the FileInformationType may be used to indicate the time a file was
last modified. For this property, the identifier is MODIFIED_TIME_ID and the value shall be an
unsigned long long data type containing the number of seconds since 00:00:00 UTC, Jan. 1,
1970.
Constant string MODIFIED_TIME_ID=”MODIFIED_TIME”;

3.1.3.4.2.3.8 LAST_ACCESS_TIME_ID

The fileProperies element of the FileInformationType may be used to indicate the time a file was
last accessed. For this property, the identifier is LAST_ACCESS_TIME_ID and the value shall
be an unsigned long long data type containing the number of seconds since 00:00:00 UTC, Jan.
1, 1970.
Constant string LAST_ACCESS_TIME_ID=”LAST_ACCESS_TIME”;

3.1.3.4.2.4 Attributes

N/A.

3.1.3.4.2.5 Operations

3.1.3.4.2.5.1 remove

3.1.3.4.2.5.1.1 Brief Rationale

The remove operation provides the ability to remove a plain file from a file system.

3.1.3.4.2.5.1.2 Synopsis
void remove (in string fileName) raises (FileException,
InvalidFileName);

3.1.3.4.2.5.1.3 Behavior

The remove operation shall remove the plain file which corresponds to the input fileName
parameter.

3.1.3.4.2.5.1.4 Returns

This operation does not return any value.

3.1.3.4.2.5.1.5 Exceptions/Errors

The remove operation shall raise the CF InvalidFileName exception when the input fileName
parameter is not a valid absolute pathname.

The remove operation shall raise the CF FileException when a file-related error occurs.

3-81

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.4.2.5.2 copy

3.1.3.4.2.5.2.1 Brief Rationale

The copy operation provides the ability to copy a plain file to another plain file.

3.1.3.4.2.5.2.2 Synopsis
void copy (in string sourceFileName, in string
destinationFileName) raises (InvalidFileName, FileException);

3.1.3.4.2.5.2.3 Behavior

The copy operation shall copy the source file identified by the input sourceFileName parameter
to the destination file identified by the input destinationFileName parameter.

The copy operation shall overwrite the destination file, when the destination file already exists
and is not identical to the source file.

3.1.3.4.2.5.2.4 Returns

This operation does not return any value.

3.1.3.4.2.5.2.5 Exceptions/Errors

The copy operation shall raise the CF FileException exception when a file-related error occurs.

The copy operation shall raise the CF InvalidFileName exception when the destination pathname
is identical to the source pathname.

The copy operation shall raise the CF InvalidFileName exception when the sourceFileName or
destinationFileName input parameters are not a valid absolute pathnames.

3.1.3.4.2.5.3 exists

3.1.3.4.2.5.3.1 Brief Rationale

The exists operation provides the ability to verify the existence of a file within a file system.

3.1.3.4.2.5.3.2 Synopsis
boolean exists (in string fileName) raises (InvalidFileName);

3.1.3.4.2.5.3.3 Behavior

The exists operation shall check to see if a file exists based on the fileName parameter.

3.1.3.4.2.5.3.4 Returns

The exists operation shall return TRUE if the file exists, or FALSE if it does not.

3.1.3.4.2.5.3.5 Exceptions/Errors

The exists operation shall raise the CF InvalidFileName exception when input fileName
parameter is not a valid absolute pathname.

3-82

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.4.2.5.4 list

3.1.3.4.2.5.4.1 Brief Rationale

The list operation provides the ability to obtain a list of files along with their information in the
file system according to a given search pattern. The list operation may be used to return
information for one file or for a set of files.

3.1.3.4.2.5.4.2 Synopsis
FileInformationSequence list (in string pattern) raises
(FileException, InvalidFileName);

3.1.3.4.2.5.4.3 Behavior

The list operation shall support the “*” and “?” wildcard characters (used to match any sequence
of characters (including null) and any single character, respectively. These wildcards shall only
be applied following the right-most forward-slash character (“/”) in the pathname contained in
the input pattern parameter.

3.1.3.4.2.5.4.4 Returns

The list operation shall return a FileInformationSequence for files that match the search pattern
specified in the input pattern parameter. The list operation shall return a zero length sequence
when no file is found which matches the search pattern.

3.1.3.4.2.5.4.5 Exceptions/Errors

The list operation shall raise the CF InvalidFileName exception when the input pattern parameter
is not an absolute pathname or cannot be interpreted due to unexpected characters.

The list operation shall raise the CF FileException when a file-related error occurs.

3.1.3.4.2.5.5 create

3.1.3.4.2.5.5.1 Brief Rationale

The create operation provides the ability to create a new plain file on the file system.

3.1.3.4.2.5.5.2 Synopsis
File create (in string fileName) raises (InvalidFileName,
FileException);

3.1.3.4.2.5.5.3 Behavior

The create operation shall create a new File based upon the input fileName parameter.

3.1.3.4.2.5.5.4 Returns

The create operation shall return a file object reference to the opened file.

3.1.3.4.2.5.5.5 Exceptions/Errors

The create operation shall raise the CF FileException if the file already exists or another file
error occurred.

The create operation shall raise the CF InvalidFileName exception when the input fileName
parameter is not a valid absolute pathname.

3-83

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.4.2.5.6 open

3.1.3.4.2.5.6.1 Brief Rationale

The open operation provides the ability to open a plain file for read or write.

3.1.3.4.2.5.6.2 Synopsis
File open (in string fileName, in boolean read_Only) raises
(InvalidFileName, FileException);

3.1.3.4.2.5.6.3 Behavior

The open operation shall open the file referenced by the input fileName parameter. The open
operation shall open the file with read-only access when the input read_Only parameter is
TRUE. The open operation shall open the file for write access when the input read_Only
parameter is FALSE.

3.1.3.4.2.5.6.4 Returns

The open operation shall return a File instance on successful completion. The open operation
shall set the filePointer attribute of the returned file instance to the beginning of the file.

3.1.3.4.2.5.6.5 Exceptions/Errors

The open operation shall raise the CF FileException if the file does not exist or another file error
occurred.

The open operation shall raise the CF InvalidFileName exception when the input fileName
parameter is not a valid absolute pathname.

3.1.3.4.2.5.7 mkdir

3.1.3.4.2.5.7.1 Brief Rationale

The mkdir operation provides the ability to create a directory on the file system.

3.1.3.4.2.5.7.2 Synopsis
void mkdir (in string directoryName) raises (InvalidFileName,
FileException);

3.1.3.4.2.5.7.3 Behavior

The mkdir operation shall create a file system directory based on the directoryName given. The
mkdir operation shall create all parent directories required to create the directoryName path
given.

3.1.3.4.2.5.7.4 Returns.

This operation does not return any value.

3.1.3.4.2.5.7.5 Exceptions/Errors

The mkdir operation shall raise the CF FileException if the directory indicated by the input
directoryName parameter already exists or if a file-related error occurred during the operation.

The mkdir operation shall raise the CF InvalidFileName exception when the directoryName is
not a valid directory name.

3-84

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.4.2.5.8 rmdir.

3.1.3.4.2.5.8.1 Brief Rationale

The rmdir operation provides the ability to remove a directory from the file system.

3.1.3.4.2.5.8.2 Synopsis
void rmdir (in string directoryName) raises (InvalidFileName,
FileException);

3.1.3.4.2.5.8.3 Behavior

The rmdir operation shall remove the directory identified by the input directoryName parameter.

The rmdir operation shall not remove the directory identified by the input directoryName
parameter when the directory contains files.

3.1.3.4.2.5.8.4 Returns

This operation does not return any value.

3.1.3.4.2.5.8.5 Exceptions/Errors

The rmdir operation shall raise the CF FileException when the directory identified by the input
directoryName parameter does not exist, the directory contains files, or an error occurs which
prohibits the directory from being deleted.

The rmdir operation shall raise the CF InvalidFileName exception when the input directoryName
parameter is not a valid path prefix.

3.1.3.4.2.5.9 query

3.1.3.4.2.5.9.1 Brief Rationale

The query operation provides the ability to retrieve information about a file system.

3.1.3.4.2.5.9.2 Synopsis
void query (inout Properties fileSystemProperties) raises
(UnknownFileSystemProperties);

3.1.3.4.2.5.9.3 Behavior

The query operation shall return file system information to the calling client based upon the
given fileSystemProperties' ID.

The FileSystem::query operation shall recognize and provide the designated return values for the
following fileSystemProperties (section 3.1.3.4.2.3.2):

1. SIZE - an ID value of "SIZE” causes the query operation to return an unsigned
long long containing the file system size (in octets).

2. AVAILABLE SPACE - an ID value of "AVAILABLE SPACE" causes the query
operation to return an unsigned long long containing the available space on the
file system (in octets)

See section 3.1.3.4.2.3.2 for the constants for the fileSystemProperties.

3-85

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.4.2.5.9.4 Returns

This operation does not return any value.

3.1.3.4.2.5.9.5 Exceptions/Errors

The query operation shall raise the UnknownFileSystemProperties exception when the given file
system property is not recognized.

3.1.3.4.3 FileManager

3.1.3.4.3.1 Description

Multiple, distributed file systems may be accessed through a file manager. The FileManager
interface appears to be a single file system although the actual file storage may span multiple
physical file systems. (Reference the FileManager interface UML in Figure 3-31.)

This is called a federated file system. A federated file system is created using the mount and
unmount operations. Typically, the domain manager or system initialization software will
invoke these operations.

The FileManager inherits the IDL interface of a FileSystem. Based upon the pathname of a
directory or file and the set of mounted file systems, the file manager delegates the FileSystem
operations to the appropriate file system. For example, if a file system is mounted at “/ppc2”, an
open operation for a file called “/ppc2/profile.xml” would be delegated to the mounted file
system. The mounted file system will be given the filename relative to it. In this example the
FileSystem’s open operation would receive “/profile.xml” as the fileName argument.

Another example of this concept is shown using the copy operation. When a client invokes the
copy operation, the file manager delegates the operation to the appropriate file systems (based
upon supplied pathnames) thereby allowing copy of files between file systems.

If a client does not need to mount and unmount file systems, it may treat the file manager as a
file system by CORBA widening a FileManager reference to a FileSystem reference. One can
always widen a FileManager to a FileSystem since the FileManager is derived from a
FileSystem.

3-86

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.4.3.2 UML

Figure 3-31: FileManager Interface UML

3.1.3.4.3.3 Types

3.1.3.4.3.3.1 MountType

The MountType structure identifies the file systems mounted within the file manager.
struct MountType
{
 string mountPoint;
 FileSystem fs;
};

3.1.3.4.3.3.2 MountSequence

The MountSequence is an unbounded sequence of Mount types.
typedef sequence <MountType> MountSequence;

3.1.3.4.3.3.3 NonExistentMount

The NonExistentMount exception indicates a mount point does not exist within the
FileManager.
exception NonExistentMount{};

3.1.3.4.3.3.4 MountPointAlreadyExists

The MountPointAlreadyExists exception indicates the mount point is already in use in the
FileManager.
exception MountPointAlreadyExists{};

3-87

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.4.3.3.5 InvalidFileSystem

The InvalidFileSystem exception indicates the FileSystem is a null (nil) object reference.
exception InvalidFileSystem{};

3.1.3.4.3.4 Attributes

N/A

3.1.3.4.3.5 Operations

3.1.3.4.3.5.1 mount

3.1.3.4.3.5.1.1 Brief Rationale

The file manager supports the notion of a federated file system. To create a federated file
system, the mount operation associates a file system with a mount point (a directory name).

3.1.3.4.3.5.1.2 Synopsis
void mount (in string mountPoint, in FileSystem file_System)
raises (InvalidFileName, InvalidFileSystem,
MountPointAlreadyExists);

3.1.3.4.3.5.1.3 Behavior

The mount operation shall associate the specified file system with the mount point referenced by
the input mountPoint parameter. A mount point name shall begin with a “/” (forward slash
character). The input mountPoint parameter is a logical directory name for a file system.

3.1.3.4.3.5.1.4 Returns.

This operation does not return any value.

3.1.3.4.3.5.1.5 Exceptions/Errors.

The mount operation shall raise the CF InvalidFileName exception when the input mount point
does not conform to the file name syntax in section 3.1.3.4.2.1.

The mount operation shall raise the MountPointAlreadyExists exception when the mount point
already exists in the file manager.

The mount operation shall raise the InvalidFileSystem exception when the input FileSystem is a
null object reference.

3.1.3.4.3.5.2 unmount

3.1.3.4.3.5.2.1 Brief Rationale

Mounted file systems may need to be removed from a file manager.

3.1.3.4.3.5.2.2 Synopsis
void unmount (in string mountPoint) raises (NonExistentMount);

3.1.3.4.3.5.2.3 Behavior

The unmount operation shall remove a mounted file system from the file manager whose
mounted name matches the input mountPoint name.

3-88

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.4.3.5.2.4 Returns

This operation does not return any value.

3.1.3.4.3.5.2.5 Exceptions/Errors

The unmount operation shall raise the NonExistentMount exception when the mount point does
not exist.

3.1.3.4.3.5.3 getMounts

3.1.3.4.3.5.3.1 Brief Rationale

File management user interfaces may need to list a file manager’s mounted file systems.

3.1.3.4.3.5.3.2 Synopsis
MountSequence getMounts();

3.1.3.4.3.5.3.3 Behavior

The getMounts operation returns a MountSequence that describes the mounted file systems.

3.1.3.4.3.5.3.4 Returns

The getMounts operation shall return a MountSequence that contains the file systems mounted
within the file manager.

3.1.3.4.3.5.3.5 Exceptions/Errors

This operation does not raise any exceptions.

3.1.3.4.3.5.4 File System Operations.

The system may support multiple FileSystem implementations. Some file systems correspond
directly to a physical file system within the system. The FileManager interface shall support a
federated, or distributed, file system that may span multiple FileSystem components. From the
client perspective, the FileManager may be used just like any other FileSystem component since
the FileManager inherits all the FileSystem operations.

A file manager shall implement the inherited FileSystem operations as required under section
3.1.3.4.2 for each mounted file system. The FileSystem operations ensure that the
filename/directory arguments given are absolute pathnames relative to a mounted file system.
The FileSystem operations inherited by a file manager shall remove the name of the mounted file
system from input pathnames before passing the pathnames to any operation on a mounted file
system. The file manager shall propagate exceptions raised by a mounted file system.

The file manager shall use the FileSystem operations of the file system whose associated mount
point exactly matches the input fileName parameter to the lowest matching subdirectory.

3.1.3.4.3.5.5 query

3.1.3.4.3.5.5.1 Brief Rationale

The inherited query operation provides the ability to retrieve the same information for a set of
file systems.

3-89

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.4.3.5.5.2 Synopsis
void query (inout Properties fileSystemProperties) raises
(UnknownFileSystemProperties);

3.1.3.4.3.5.5.3 Behavior

The query operation shall return the combined mounted file systems information to the calling
client based upon the given input fileSystemProperties’ ID elements. As a minimum, the query
operation shall support the following input fileSystemProperties ID elements:

SIZE - a property item ID value of "SIZE" causes the query operation to return the
combined total size of all the mounted file system as an unsigned long long property
value.

AVAILABLE_SPACE - a property item ID value of "AVAILABLE_SPACE" causes the
query operation to return the combined total available space (in octets) of all the mounted
file system as unsigned long long property value.

3.1.3.4.3.5.5.4 Returns

This operation does not return any value.

3.1.3.4.3.5.5.5 Exceptions/Errors

The query operation shall raise the UnknownFileSystemProperties exception when the input
fileSystemProperties parameter contains an invalid property ID element

3.1.3.5 Domain Profile

The hardware devices and software components that make up an SCA system domain are
described by a set of files that are collectively referred to as a Domain Profile. These files
describe the identity, capabilities, properties, inter-dependencies, and location of the hardware
devices and software components that make up the system. All of the descriptive data about a
system is expressed in the XML vocabulary.

The types of XML files that are used to describe a system's hardware and software assets are
depicted in Figure 3-32. The XML vocabulary within each of these files describes a distinct
aspect of the hardware and software assets. The collection of XML which are associated with a
particular software component is referred to as that component’s software profile. The contents
of a profile depends on the component being described, although every profile contains a
Software Package Descriptor – all profiles for CORBA components contain a Software
Component Descriptor. A software profile for an application contains a Software Assembly
descriptor (3.1.3.2.1.4.1), the device manager profile contains a Device Configuration Descriptor
(3.1.3.2.4.4.4), and the domain manager software profile contains a DomainManager
Configuration Descriptor (3.1.3.2.3.4.5).

Domain Profile files shall be complaint to the Document Type Definitions (DTDs) provided in
Appendix D. DTD files are installed in the domain and shall have “.dtd” as their filename
extension. All XML files shall have as the first two lines as an XML declaration (?xml) and a
document type declaration (!DOCTYPE). The XML declaration specifies the XML version and
whether the document is standalone. The document type declaration specifies the DTD for the
document. Example declarations are as follows:

3-90

SCA version 2.2.2 FINAL / 15 May 2006

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE softwareassembly SYSTEM “softwareassembly.2.2.2.dtd”>

Figure 3-32: Relationship of Domain Profile XML File Types

3.1.3.5.1 Software Package Descriptor
A Software Package Descriptor (SPD) identifies a software component implementation(s). A
Software Package Descriptor file shall have a “.spd.xml” extension. General information about a
software package, such as the name, author, property file, and implementation code information
and hardware and/or software dependencies are contained in a Software Package Descriptor file.

3-91

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.5.2 Software Component Descriptor

A Software Component Descriptor (SCD) contains information about a specific SCA software
component (Resource, ResourceFactory, Device). A Software Component Descriptor file shall
have a “.scd.xml” extension. A Software Component Descriptor file contains information about
the interfaces that a component provides and/or uses. A Software Component Descriptor for a
Device type has a reference to Device Package Descriptor file.

3.1.3.5.3 Software Assembly Descriptor
A Software Assembly Descriptor (SAD) contains information about the components that make
up an application. The application factory uses this information when creating an application. A
Software Assembly Descriptor file shall have a “.sad.xml” extension.

3.1.3.5.4 Properties Descriptor

A Property File contains information about the properties applicable to a software package or a
device package. A Properties File shall have a “.prf.xml” extension. A Properties File contains
information about the properties of a component such as configuration, test, execute, and
allocation types.

3.1.3.5.5 Device Package Descriptor
A Device Package Descriptor (DPD) identifies a class of a device. A Device Package Descriptor
File shall have a “.dpd.xml” extension. A Device Package Descriptor also has Properties that
define specific properties (capacity, serial number, etc.) for this class of device.

3.1.3.5.6 Device Configuration Descriptor

A Device Configuration Descriptor (DCD) contains information about the devices associated
with a device manager, how to find the domain manager, and the configuration information (Log,
FileSystems, etc.) for a device. A Device Configuration Descriptor file shall have a “.dcd.xml”
extension.

3.1.3.5.7 Profile Descriptor

A Profile Descriptor is an XML element which contains an absolute pathname for a Software
Package Descriptor (SPD), Software Assembly Descriptor (SAD), DomainManager
Configuration Descriptor (DMD), or a Device Configuration Descriptor (DCD), depending upon
the context. This element is used as the parameter for interface profile attributes (e.g., CF
Application, CF Device, CF ApplicationFactory, CF DeviceManager, CF DomainManager).

3.1.3.5.8 DomainManager Configuration Descriptor

A DomainManager Configuration Descriptor (DMD) contains configuration information for the
domain manager. A DomainManager Configuration Descriptor file shall have a “.dmd.xml”
extension.

3.1.3.6 Core Framework Base Types

The CF Base Types are the underlying types used in the CF interfaces.

3-92

SCA version 2.2.2 FINAL / 15 May 2006

3.1.3.6.1 DataType

This type is a CORBA IDL structure, which may be used to hold any CORBA basic type or
static IDL type. The id attribute indicates the kind of value and type (e.g., frequency, preset,
etc.). The id may be an UUID string, an integer string, or a name identifier depending on
context. The value attribute may be any static IDL type or CORBA basic type.
struct DataType
{
 string id;
 any value;
};

3.1.3.6.2 DeviceSequence
The CF DeviceSequence type defines an unbounded sequence of devices.
typedef sequence <Device> DeviceSequence;

3.1.3.6.3 FileException

The CF FileException indicates a file-related error occurred. The error number shall indicate a
CF ErrorNumberType value. The message provides information describing the error. The
message may be used for logging the error.
exception FileException {ErrorNumberType errorNumber; string
msg; };

3.1.3.6.4 InvalidFileName
The CF InvalidFileName exception indicates an invalid file name was passed to a file service
operation. The error number shall indicate a CF ErrorNumberType value. The message provides
information describing why the filename was invalid.
exception InvalidFileName {ErrorNumberType errorNumber; string
msg; };

3.1.3.6.5 InvalidObjectReference
The CF InvalidObjectReference exception indicates an invalid CORBA object reference error.
exception InvalidObjectReference {string msg;};

3.1.3.6.6 InvalidProfile
The CF InvalidProfile exception indicates an invalid profile error.
exception InvalidProfile{};

3.1.3.6.7 OctetSequence
This type is a CORBA unbounded sequence of octets.
typedef sequence <octet> OctetSequence;

3.1.3.6.8 Properties
The CF Properties is a CORBA IDL unbounded sequence of CF DataType(s), which is used in
defining a sequence of name and value pairs.

3-93

SCA version 2.2.2 FINAL / 15 May 2006

typedef sequence <DataType> Properties;

3.1.3.6.9 StringSequence
This type defines a sequence of strings.
typedef sequence <string> StringSequence;

3.1.3.6.10 UnknownProperties
The CF UnknownProperties exception indicates a set of properties unknown by the component.
exception UnknownProperties {Properties invalidProperties; };

3.1.3.6.11 DeviceAssignmentType

The CF DeviceAssignmentType defines a structure that associates a component with the device
which the component either uses, is loaded upon or on which it is executed.
struct DeviceAssignmentType
{
string componentId;
string assignedDeviceId;
};

3.1.3.6.12 DeviceAssignmentSequence
The IDL sequence, CF DeviceAssignmentSequence, provides an unbounded sequence of CF
DeviceAssignmentTypes.
typedef sequence <DeviceAssignmentType>
DeviceAssignmentSequence;

3.1.3.6.13 ErrorNumberType.
This enum is used to pass error number information in various exceptions. Those exceptions
starting with “CF_E” map the POSIX definitions (with the "CF_" removed), and is found in
reference [4].

CF_NOTSET CF_NOTSET is not defined in the POSIX specification. CF_NOTSET is an SCA
specific value that is applicable for any exception when the method specific or standard POSIX
error values are not appropriate.)
enum ErrorNumberType
{
CF_NOTSET, CF_E2BIG, CF_EACCES, CF_EAGAIN, CF_EBADF, CF_EBADMSG,
CF_EBUSY, CF_ECANCELED, CF_ECHILD, CF_EDEADLK, CF_EDOM,
CF_EEXIST, CF_EFAULT, CF_EFBIG, CF_EINPROGRESS,
CF_EINTR,CF_EINVAL, CF_EIO, CF_EISDIR, CF_EMFILE, CF_EMLINK,
CF_EMSGSIZE, CF_ENAMETOOLONG, CF_ENFILE, CF_ENODEV, CF_ENOENT,
CF_ENOEXEC, CF_ENOLCK, CF_ENOMEM, CF_ENOSPC, CF_ENOSYS,
CF_ENOTDIR, CF_ENOTEMPTY, CF_ENOTSUP ,CF_ENOTTY, CF_ENXIO,
CF_EPERM, CF_EPIPE, CF_ERANGE , CF_EROFS, CF_ESPIPE, CF_ESRCH,
CF_ETIMEDOUT ,CF_EXDEV
};

3-94

SCA version 2.2.2 FINAL / 15 May 2006

3.2 APPLICATIONS

Applications are programs that perform the functions of a specific SCA-compliant product.
They are designed to meet the requirements of a specific acquisition and are not defined by the
SCA except as they interface to the OE.

3.2.1 General Application Requirements

An application’s dependencies to the log, file manager, file system, CORBA Event Service, and
CORBA Naming Service are specified as connections in the SAD using the domainfinder
element.

3.2.1.1 OS Services

Applications shall be limited to using the OS services that are designated as mandatory in the
SCA Application Environment Profile (Appendix B).

Applications shall perform file access through the CF File interfaces. The application filename
syntax is specified in section 3.1.3.4.2.1.

All application processes shall have a handler registered for the POSIX-defined SIGQUIT signal.

3.2.1.2 CORBA Services

Applications shall be limited to using CORBA and CORBA services defined in the referenced
minimumCORBA specification [5]. Dynamically-created stringified IORs may be used to
provide an IOR reference value parameter. Applications shall not utilize static stringified IORs.

Applications may support the LogProducer interface of the CORBA Lightweight Log
Specification [7].

3.2.1.3 CF Interfaces

Applications shall implement the Base Application Interfaces as specified in section 3.1.3.1
using the corresponding IDL in Appendix C. Use of the ResourceFactory interface per section
3.1.3.1.7 is optional.

Each application component shall support the mandatory Naming Context IOR, Name Binding,
and the identifier execute parameters as described in 3.1.3.2.2.5.1, in addition to their user-
defined execute properties in the component’s SPD. Each application component shall bind its
object reference to the Naming Context IOR using the Name Binding parameter. Each
executable component of an application shall set its identifier attribute using the component
identifier execute parameter.

Each executable component of an application shall accept the standard argv arguments of the
POSIX exec family of functions [4].

An application, each application component, and each device manager shall be accompanied by
the appropriate Domain Profile files per section 3.1.3.5.

3-95

SCA version 2.2.2 FINAL / 15 May 2006

3.2.2 Application Interfaces

Applications consist of one to many components. These components may be CORBA-capable
or not CORBA-capable components. For CORBA-capable components, in addition to
supporting the CF Base Application interfaces, the component may implement and use
component-specific interfaces for data and/or control. Interfaces provided by a component shall
be described in a Software Component Descriptor file as provides ports. Interfaces required by a
component shall be described in a Software Component Descriptor file as uses ports.

An application may define interfaces that are visible to entities external to the application. These
external interfaces are Ports, referenced in the application SAD externalports element. An
application interface shall be referenced in the application’s SAD externalports element, and
thus declared “external”, if the interface provides a service that is used by other applications.

All non-standard interfaces shall be defined in Interface Control Documents that are available to
other parties without restriction to the extent that interfacing or replacement hardware and
software can be developed by other parties without restriction.

3.2.2.1 Service Definitions

SCA service definitions consist of APIs, behavior, state, priority and additional information that
provide the contract between the Service Provider and the Service User. IDL is used to define
the interfaces for service definitions to foster reuse and interoperability. IDL provides a method
to inherit from multiple interfaces to form a new service definition.

All SCA APIs shall have their interfaces described in IDL. All non-IDL interfaces shall provide
an IDL mapping within the service definition.

3.3 LOGICAL DEVICE

A logical device is a software component that implements one of the Base Device Interfaces. The
Base Device Interfaces are Device, LoadableDevice, ExecutableDevice, and AggregateDevice as
stated in section 2.2.2. and depicted in Figure 3-33.

3-96

SCA version 2.2.2 FINAL / 15 May 2006

Figure 3-33: Logical Device Interface Relationships

3.3.1 OS Services

Logical devices may use any service provided by the OE and as such are not restricted to using
the services specified in the SCA Application Environment Profile (Appendix B).

The executable parameters of a logical device shall accept the standard argv arguments as used
in the POSIX exec family of functions [4].

A logical device shall accept the executable parameters as specified in section 3.1.3.3.3.5.1.3
(ExecutableDevice::execute).

3.3.2 CORBA Services.

Logical devices shall be limited to using CORBA and CORBA services defined in the referenced
minimumCORBA specification [5].

Logical devices may support the LogProducer interface of the CORBA Lightweight Log
Specification [7].

3-97

SCA version 2.2.2 FINAL / 15 May 2006

3.3.3 CF Interfaces

A logical device implements one of the following CF interfaces: Device, LoadableDevice or
ExecutableDevice.

In addition to the requirements stated in the Device interface (section 3.1.3.3.1), a logical device
has the requirements as stated in the Resource, PropertySet, Lifecycle, Port, PortSupplier and
TestableObject interfaces.

A logical device shall register itself with a device manager using the value associated with the
DEVICE_MGR_IOR parameter per 3.1.3.2.4.5.

A child device shall add itself to a parent device using the executable Composite Device IOR
parameter per 3.1.3.2.4.5.

The values associated with the parameters (PROFILE_NAME, COMPOSITE_DEVICE_IOR,
DEVICE_ID and DEVICE_LABEL) as described in 3.1.3.2.4.5 shall be used to set the Device’s
softwareProfile, compositeDevice, identifier, and label attributes, respectively.

Hardware critical interfaces shall be defined in Interface Control Documents that are available to
other parties without restriction. Critical interfaces are those interfaces at the physical boundary
of a replaceable device that are required for the operation and maintenance of the device.

Additional service APIs and their ports beyond the CF adhere to the requirements as described in
section 3.2.2.

3.3.4 Profile

Each logical device shall have a SPD, SCD, DPD, and one or more Properties Descriptors as
described in section 3.1.3.5. For each logical device, allocation properties shall be defined in its
referenced SPD’s property file.

3.4 GENERAL SOFTWARE RULES

This section identifies those rules and recommendations specific to the Software
Communications Architecture that are not specifically addressed elsewhere in this specification.

3.4.1 Software Development Languages

3.4.1.1 New Software

Software developed for an SCA-compliant system shall be developed in a standard higher order
language. The goal of new development should be to provide software that is independent from
platform and environment dependencies, ensuring minimal portability issues.

3.4.1.2 Legacy Software

Legacy software is not required to be rewritten in a standard higher order language. Legacy
software shall interface with the Core Framework in accordance with this specification.

3-98

SCA version 2.2.2 FINAL / 15 May 2006

4 ARCHITECTURE COMPLIANCE
This section defines the authorities as well as the requirements and criteria for the certification of
any product to this specification.

Certification may be requested for any product meeting all applicable requirements identified
within the scope of the specification. The applicable requirements for any product not fulfilling
all requirements of this specification are determined at the sole discretion of the Certification
Authority (section 4.1)

This process is based on the existence of three distinct organizations: a Certification Authority
(CA), a Specification Authority (SA), and a Test and Evaluation Authority (TA). The CA is
given the sole responsibility for granting certification for all products to the specified standard,
based on the data and recommendations provided. The Certification Authority is supported by
the Specification Authority (SA), which is responsible for developing, maintaining, evolving and
interpreting the standard, and the Test and Evaluation Authority (TA) which is responsible for
the definition of all test procedures, development and maintenance of all test tools, and for
providing formal certification test results.

4.1 CERTIFICATION AUTHORITY

The Joint Program Executive Office (JPEO) JTRS is the Certification Authority (CA) for the
SCA and is given the sole responsibility and authority for granting certification of all products to
this specification and to certify that a product meets the requirements of this specification. The
JPEO JTRS authority is derived from its Charter [C].

4.2 SPECIFICATION AUTHORITY

The Joint Program Executive Office (JPEO) JTRS is the Specification Authority (SA) for the
SCA and is given the sole responsibility and authority to incorporate changes, recommendations,
additions, or retractions into this specification.

4.3 RESPONSIBILITY FOR COMPLIANCE EVALUATION

The Joint Program Executive Office (JPEO) JTRS shall assign one or more test organizations as
the Test and Evaluation Authority (TA) for the SCA. The TA has the responsibility for
providing formal certification test results to the Certification Authority.

4.4 EVALUATING COMPLIANCE

Compliance to this specification requires a product to meet all applicable requirements identified
within the scope of the specification. Applicability of requirements to specific products is
determined by the Certification Authority. Products are submitted to the Test and Evaluation
Authority for verification. Results of that verification are submitted to the Certification Authority
for evaluation.

The CA grants three levels of product certification for all JTRS standards: Fully Compliant,
Compliant with Waivers, and Non-Compliant. A certification of Fully Compliant will be granted
when a product has passed all requirements identified by the TA, without exception, for a

4-1

SCA version 2.2.2 FINAL / 15 May 2006

specific version of the standard. A product will be certified as Compliant with Waivers when all
requirements not validated according to the criteria for a Fully Compliant certification, are
granted waivers under the process defined in the JTRS Standards Waiver Process [D]. A product
will be declared Non-Compliant when any failed requirement exists for which a waiver is not
approved.

4.5 REGISTRATION.

Some elements of an SCA implementation are identified with a Universally Unique Identifier
(UUID). As used in this specification, the UUID is defined by the DCE UUID standard adopted
by the Common Object Request Broker Architecture (CORBA) [9]. No centralized authority is
required to administer UUIDs under this specification.

4-2

	1 INTRODUCTION
	1.1 SCOPE
	1.2 COMPLIANCE
	1.3 DOCUMENT CONVENTIONS, TERMINOLOGY, AND DEFINITIONS
	1.3.1 Conventions and Terminology
	1.3.1.1 File and Directory Nomenclature
	1.3.1.2 Unified Modeling Language
	1.3.1.3 Interface Definition Language
	1.3.1.4 eXtensible Markup Language
	1.3.1.5 Requirements Language
	1.3.1.6 Core Framework Interface and Operation Identification
	1.3.1.7 Figures

	1.3.2 Definitions

	1.4 DOCUMENT CONTENT
	1.5 NORMATIVE REFERENCES
	1.6 INFORMATIVE REFERENCES
	2 OVERVIEW
	2.1 ARCHITECTURE DEFINITION METHODOLOGY
	2.2 ARCHITECTURE OVERVIEW
	2.2.1 Goals and Context
	2.2.2 Core Framework
	2.2.3 Definitions
	2.2.4 Structure
	2.2.4.1 Bus Layer (Board Support Package)
	2.2.4.2 Network & Serial Interface Services
	2.2.4.3 Operating System
	2.2.4.4 CORBA Middleware
	2.2.4.5 Applications
	2.2.4.5.1 Adapters

	2.2.4.6 Reference Model

	2.2.5 Networking Overview

	3 SOFTWARE ARCHITECTURE DEFINITION
	3.1 OPERATING ENVIRONMENT
	3.1.1 Operating System
	3.1.2 CORBA Middleware & Services
	3.1.2.1 Naming Service
	3.1.2.2 Log Service
	3.1.2.2.1 Log Producers

	3.1.2.3 CORBA Event Service and Standard Events
	3.1.2.3.1 CORBA Event Service
	3.1.2.3.2 StandardEvent Module
	3.1.2.3.2.1 Types
	3.1.2.3.2.1.1 StateChangeCategoryType
	3.1.2.3.2.1.2 StateChangeType
	3.1.2.3.2.1.3 StateChangeEventType
	3.1.2.3.2.1.4 SourceCategoryType
	3.1.2.3.2.1.5 DomainManagementObjectRemovedEventType
	3.1.2.3.2.1.6 DomainManagementObjectAddedEventType

	3.1.3 Core Framework
	3.1.3.1 Base Application Interfaces
	3.1.3.1.1 Port
	3.1.3.1.1.1 Description
	3.1.3.1.1.2 UML
	3.1.3.1.1.3 Types
	3.1.3.1.1.3.1 InvalidPort
	3.1.3.1.1.3.2 OccupiedPort

	3.1.3.1.1.4 Attributes
	3.1.3.1.1.5 Operations
	3.1.3.1.1.5.1 connectPort
	3.1.3.1.1.5.1.1 Brief Rationale
	3.1.3.1.1.5.1.2 Synopsis
	3.1.3.1.1.5.1.3 Behavior
	3.1.3.1.1.5.1.4 Returns
	3.1.3.1.1.5.1.5 Exceptions/Errors

	3.1.3.1.1.5.2 disconnectPort
	3.1.3.1.1.5.2.1 Brief Rationale
	3.1.3.1.1.5.2.2 Synopsis
	3.1.3.1.1.5.2.3 Behavior
	3.1.3.1.1.5.2.4 Returns
	3.1.3.1.1.5.2.5 Exceptions/Errors

	3.1.3.1.2 LifeCycle
	3.1.3.1.2.1 Description
	3.1.3.1.2.2 UML
	3.1.3.1.2.3 Types
	3.1.3.1.2.3.1 InitializeError
	3.1.3.1.2.3.2 ReleaseError

	3.1.3.1.2.4 Attributes
	3.1.3.1.2.5 Operations
	3.1.3.1.2.5.1 initialize
	3.1.3.1.2.5.1.1 Brief Rationale
	3.1.3.1.2.5.1.2 Synopsis
	3.1.3.1.2.5.1.3 Behavior
	3.1.3.1.2.5.1.4 Returns
	3.1.3.1.2.5.1.5 Exceptions/Errors

	3.1.3.1.2.5.2 releaseObject
	3.1.3.1.2.5.2.1 Brief Rationale
	3.1.3.1.2.5.2.2 Synopsis
	3.1.3.1.2.5.2.3 Behavior
	3.1.3.1.2.5.2.4 Returns
	3.1.3.1.2.5.2.5 Exceptions/Errors

	3.1.3.1.3 TestableObject
	3.1.3.1.3.1 Description
	3.1.3.1.3.2 UML
	3.1.3.1.3.3 Types
	3.1.3.1.3.3.1 UnknownTest

	3.1.3.1.3.4 Attributes
	3.1.3.1.3.5 Operations
	3.1.3.1.3.5.1 runTest
	3.1.3.1.3.5.1.1 Brief Rationale
	3.1.3.1.3.5.1.2 Synopsis
	3.1.3.1.3.5.1.3 Behavior
	3.1.3.1.3.5.1.4 Returns
	3.1.3.1.3.5.1.5 Exceptions/Errors

	3.1.3.1.4 PortSupplier
	3.1.3.1.4.1 Description
	3.1.3.1.4.2 UML
	3.1.3.1.4.3 Types
	3.1.3.1.4.3.1 UnknownPort

	3.1.3.1.4.4 Attributes
	3.1.3.1.4.5 Operations
	3.1.3.1.4.5.1 getPort
	3.1.3.1.4.5.1.1 Brief Rationale
	3.1.3.1.4.5.1.2 Synopsis
	3.1.3.1.4.5.1.3 Behavior
	3.1.3.1.4.5.1.4 Returns
	3.1.3.1.4.5.1.5 Exceptions/Errors

	3.1.3.1.5 PropertySet
	3.1.3.1.5.1 Description
	3.1.3.1.5.2 UML
	3.1.3.1.5.3 Types
	3.1.3.1.5.3.1 InvalidConfiguration
	3.1.3.1.5.3.2 PartialConfiguration

	3.1.3.1.5.4 Attributes
	3.1.3.1.5.5 Operations
	3.1.3.1.5.5.1 configure
	3.1.3.1.5.5.1.1 Brief Rationale
	3.1.3.1.5.5.1.2 Synopsis
	3.1.3.1.5.5.1.3 Behavior
	3.1.3.1.5.5.1.4 Returns
	3.1.3.1.5.5.1.5 Exceptions/Errors

	3.1.3.1.5.5.2 query
	3.1.3.1.5.5.2.1 Brief Rationale
	3.1.3.1.5.5.2.2 Synopsis
	3.1.3.1.5.5.2.3 Behavior
	3.1.3.1.5.5.2.4 Returns
	3.1.3.1.5.5.2.5 Exceptions/Errors

	3.1.3.1.6 Resource
	3.1.3.1.6.1 Description
	3.1.3.1.6.2 UML.
	3.1.3.1.6.3 Types
	3.1.3.1.6.3.1 StartError
	3.1.3.1.6.3.2 StopError

	3.1.3.1.6.4 Attributes
	3.1.3.1.6.4.1 identifier

	3.1.3.1.6.5 Operations
	3.1.3.1.6.5.1 start
	3.1.3.1.6.5.1.1 Brief Rationale
	3.1.3.1.6.5.1.2 Synopsis
	3.1.3.1.6.5.1.3 Behavior
	3.1.3.1.6.5.1.4 Returns
	3.1.3.1.6.5.1.5 Exceptions/Errors

	3.1.3.1.6.5.2 stop
	3.1.3.1.6.5.2.1 Brief Rationale
	3.1.3.1.6.5.2.2 Synopsis
	3.1.3.1.6.5.2.3 Behavior
	3.1.3.1.6.5.2.4 Returns
	3.1.3.1.6.5.2.5 Exceptions/Errors

	3.1.3.1.7 ResourceFactory
	3.1.3.1.7.1 Description
	3.1.3.1.7.2 UML
	3.1.3.1.7.3 Types
	3.1.3.1.7.3.1 InvalidResourceId
	3.1.3.1.7.3.2 ShutdownFailure
	3.1.3.1.7.3.3 CreateResourceFailure

	3.1.3.1.7.4 Attributes
	3.1.3.1.7.4.1 identifier

	3.1.3.1.7.5 Operations
	3.1.3.1.7.5.1 createResource
	3.1.3.1.7.5.1.1 Brief Rationale
	3.1.3.1.7.5.1.2 Synopsis
	3.1.3.1.7.5.1.3 Behavior
	3.1.3.1.7.5.1.4 Returns
	3.1.3.1.7.5.1.5 Exceptions/Errors

	3.1.3.1.7.5.2 releaseResource
	3.1.3.1.7.5.2.1 Brief Rationale
	3.1.3.1.7.5.2.2 Synopsis
	3.1.3.1.7.5.2.3 Behavior
	3.1.3.1.7.5.2.4 Returns
	3.1.3.1.7.5.2.5 Exceptions/Errors

	3.1.3.1.7.5.3 shutdown
	3.1.3.1.7.5.3.1 Brief Rationale
	3.1.3.1.7.5.3.2 Synopsis
	3.1.3.1.7.5.3.3 Behavior
	3.1.3.1.7.5.3.4 Returns
	3.1.3.1.7.5.3.5 Exceptions/Errors

	3.1.3.2 Framework Control Interfaces
	3.1.3.2.1 Application
	3.1.3.2.1.1 Description
	3.1.3.2.1.2 UML
	3.1.3.2.1.3 Types
	3.1.3.2.1.3.1 ComponentProcessIdType
	3.1.3.2.1.3.2 ComponentProcessIdSequence
	3.1.3.2.1.3.3 ComponentElementType
	3.1.3.2.1.3.4 ComponentElementSequence

	3.1.3.2.1.4 Attributes
	3.1.3.2.1.4.1 profile
	3.1.3.2.1.4.2 name
	3.1.3.2.1.4.3 componentNamingContexts
	3.1.3.2.1.4.4 componentProcessIds
	3.1.3.2.1.4.5 componentDevices
	3.1.3.2.1.4.6 componentImplementations

	3.1.3.2.1.5 General Class Behavior
	3.1.3.2.1.6 Operations
	3.1.3.2.1.6.1 releaseObject
	3.1.3.2.1.6.1.1 Brief Rationale
	3.1.3.2.1.6.1.2 Synopsis
	3.1.3.2.1.6.1.3 Behavior
	3.1.3.2.1.6.1.4 Returns
	3.1.3.2.1.6.1.5 Exceptions/Errors

	3.1.3.2.1.6.2 getPort
	3.1.3.2.1.6.2.1 Brief Rationale
	3.1.3.2.1.6.2.2 Synopsis
	3.1.3.2.1.6.2.3 Behavior
	3.1.3.2.1.6.2.4 Returns
	3.1.3.2.1.6.2.5 Exceptions/Errors

	3.1.3.2.2 ApplicationFactory
	3.1.3.2.2.1 Description
	3.1.3.2.2.2 UML
	3.1.3.2.2.3 Types
	3.1.3.2.2.3.1 CreateApplicationRequestError Exception
	3.1.3.2.2.3.2 CreateApplicationError Exception
	3.1.3.2.2.3.3 Exception InvalidInitConfiguration

	3.1.3.2.2.4 Attributes
	3.1.3.2.2.4.1 name
	3.1.3.2.2.4.2 softwareProfile
	3.1.3.2.2.4.3 identifier

	3.1.3.2.2.5 Operations
	3.1.3.2.2.5.1 create
	3.1.3.2.2.5.1.1 Brief Rationale
	3.1.3.2.2.5.1.2 Synopsis
	3.1.3.2.2.5.1.3 Behavior
	3.1.3.2.2.5.1.4 Returns
	3.1.3.2.2.5.1.5 Exceptions/Errors

	3.1.3.2.3 DomainManager
	3.1.3.2.3.1 Description
	3.1.3.2.3.2 UML
	3.1.3.2.3.3 Types
	3.1.3.2.3.3.1 ApplicationInstallationError
	3.1.3.2.3.3.2 InvalidIdentifier
	3.1.3.2.3.3.3 DeviceManagerSequence
	3.1.3.2.3.3.4 ApplicationSequence
	3.1.3.2.3.3.5 ApplicationFactorySequence
	3.1.3.2.3.3.6 DeviceManagerNotRegistered Exception
	3.1.3.2.3.3.7 RegisterError
	3.1.3.2.3.3.8 UnregisterError
	3.1.3.2.3.3.9 ApplicationUninstallationError
	3.1.3.2.3.3.10 InvalidEventChannelName
	3.1.3.2.3.3.11 AlreadyConnected
	3.1.3.2.3.3.12 NotConnected
	3.1.3.2.3.3.13 ApplicationAlreadyInstalled

	3.1.3.2.3.4 Attributes.
	3.1.3.2.3.4.1 deviceManagers
	3.1.3.2.3.4.2 applications
	3.1.3.2.3.4.3 applicationFactories
	3.1.3.2.3.4.4 fileMgr
	3.1.3.2.3.4.5 domainManagerProfile
	3.1.3.2.3.4.6 identifier

	3.1.3.2.3.5 General Class Behavior
	3.1.3.2.3.6 Operations
	3.1.3.2.3.6.1 registerDeviceManager
	3.1.3.2.3.6.1.1 Brief Rationale
	3.1.3.2.3.6.1.2 Synopsis
	3.1.3.2.3.6.1.3 Behavior
	3.1.3.2.3.6.1.4 Returns
	3.1.3.2.3.6.1.5 Exceptions/Errors

	3.1.3.2.3.6.2 registerDevice
	3.1.3.2.3.6.2.1 Brief Rationale
	3.1.3.2.3.6.2.2 Synopsis
	3.1.3.2.3.6.2.3 Behavior
	3.1.3.2.3.6.2.4 Returns
	3.1.3.2.3.6.2.5 Exceptions/Errors

	3.1.3.2.3.6.3 installApplication
	3.1.3.2.3.6.3.1 Brief Rationale
	3.1.3.2.3.6.3.2 Synopsis
	3.1.3.2.3.6.3.3 Behavior
	3.1.3.2.3.6.3.4 Returns
	3.1.3.2.3.6.3.5 Exceptions/Errors

	3.1.3.2.3.6.4 unregisterDeviceManager
	3.1.3.2.3.6.4.1 Brief Rationale
	3.1.3.2.3.6.4.2 Synopsis
	3.1.3.2.3.6.4.3 Behavior
	3.1.3.2.3.6.4.4 Returns
	3.1.3.2.3.6.4.5 Exceptions/Errors

	3.1.3.2.3.6.5 unregisterDevice
	3.1.3.2.3.6.5.1 Brief Rationale
	3.1.3.2.3.6.5.2 Synopsis
	3.1.3.2.3.6.5.3 Behavior
	3.1.3.2.3.6.5.4 Returns
	3.1.3.2.3.6.5.5 Exceptions/Errors

	3.1.3.2.3.6.6 uninstallApplication
	3.1.3.2.3.6.6.1 Brief Rationale
	3.1.3.2.3.6.6.2 Synopsis
	3.1.3.2.3.6.6.3 Behavior
	3.1.3.2.3.6.6.4 Returns
	3.1.3.2.3.6.6.5 Exceptions/Errors

	3.1.3.2.3.6.7 registerService
	3.1.3.2.3.6.7.1 Brief Rationale
	3.1.3.2.3.6.7.2 Synopsis
	3.1.3.2.3.6.7.3 Behavior
	3.1.3.2.3.6.7.4 Returns
	3.1.3.2.3.6.7.5 Exceptions/Errors.

	3.1.3.2.3.6.8 unregisterService
	3.1.3.2.3.6.8.1 Brief Rationale
	3.1.3.2.3.6.8.2 Synopsis
	3.1.3.2.3.6.8.3 Behavior
	3.1.3.2.3.6.8.4 Returns
	3.1.3.2.3.6.8.5 Exceptions/Errors

	3.1.3.2.3.6.9 registerWithEventChannel
	3.1.3.2.3.6.9.1 Brief Rationale
	3.1.3.2.3.6.9.2 Synopsis
	3.1.3.2.3.6.9.3 Behavior
	3.1.3.2.3.6.9.4 Returns
	3.1.3.2.3.6.9.5 Exceptions/Errors

	3.1.3.2.3.6.10 unregisterFromEventChannel
	3.1.3.2.3.6.10.1 Brief Rationale
	3.1.3.2.3.6.10.2 Synopsis
	3.1.3.2.3.6.10.3 Behavior
	3.1.3.2.3.6.10.4 Returns
	3.1.3.2.3.6.10.5 Exceptions/Errors

	3.1.3.2.4 DeviceManager
	3.1.3.2.4.1 Description
	3.1.3.2.4.2 UML
	3.1.3.2.4.3 Types
	3.1.3.2.4.3.1 ServiceType
	3.1.3.2.4.3.2 ServiceSequenceType

	3.1.3.2.4.4 Attributes
	3.1.3.2.4.4.1 identifier
	3.1.3.2.4.4.2 label
	3.1.3.2.4.4.3 fileSys
	3.1.3.2.4.4.4 deviceConfigurationProfile
	3.1.3.2.4.4.5 registeredDevices
	3.1.3.2.4.4.6 registeredServices

	3.1.3.2.4.5 General Behavior
	3.1.3.2.4.6 Operations
	3.1.3.2.4.6.1 registerDevice
	3.1.3.2.4.6.1.1 Brief Rationale
	3.1.3.2.4.6.1.2 Synopsis
	3.1.3.2.4.6.1.3 Behavior
	3.1.3.2.4.6.1.4 Returns
	3.1.3.2.4.6.1.5 Exceptions/Errors

	3.1.3.2.4.6.2 unregisterDevice
	3.1.3.2.4.6.2.1 Brief Rationale
	3.1.3.2.4.6.2.2 Synopsis
	3.1.3.2.4.6.2.3 Behavior
	3.1.3.2.4.6.2.4 Returns
	3.1.3.2.4.6.2.5 Exceptions/Errors

	3.1.3.2.4.6.3 registerService
	3.1.3.2.4.6.3.1 Brief Rationale
	3.1.3.2.4.6.3.2 Synopsis
	3.1.3.2.4.6.3.3 Behavior
	3.1.3.2.4.6.3.4 Returns
	3.1.3.2.4.6.3.5 Exceptions/Errors

	3.1.3.2.4.6.4 unregisterService
	3.1.3.2.4.6.4.1 Brief Rationale.
	3.1.3.2.4.6.4.2 Synopsis
	3.1.3.2.4.6.4.3 Behavior
	3.1.3.2.4.6.4.4 Returns
	3.1.3.2.4.6.4.5 Exceptions/Errors

	3.1.3.2.4.6.5 shutdown
	3.1.3.2.4.6.5.1 Brief Rationale
	3.1.3.2.4.6.5.2 Synopsis
	3.1.3.2.4.6.5.3 Behavior
	3.1.3.2.4.6.5.4 Returns
	3.1.3.2.4.6.5.5 Exceptions/Errors

	3.1.3.2.4.6.6 getComponentImplementationId.
	3.1.3.2.4.6.6.1 Brief Rational
	3.1.3.2.4.6.6.2 Synopsis
	3.1.3.2.4.6.6.3 Behavior
	3.1.3.2.4.6.6.4 Returns
	3.1.3.2.4.6.6.5 Exceptions/Errors

	3.1.3.3 Base Device Interfaces
	3.1.3.3.1 Device
	3.1.3.3.1.1 Description
	3.1.3.3.1.2 UML
	3.1.3.3.1.3 Types
	3.1.3.3.1.3.1 InvalidState
	3.1.3.3.1.3.2 InvalidCapacity
	3.1.3.3.1.3.3 AdminType
	3.1.3.3.1.3.4 OperationalType
	3.1.3.3.1.3.5 UsageType

	3.1.3.3.1.4 Attributes
	3.1.3.3.1.4.1 usageState.
	3.1.3.3.1.4.2 adminState
	3.1.3.3.1.4.3 operationalState
	3.1.3.3.1.4.4 softwareProfile
	3.1.3.3.1.4.5 label
	3.1.3.3.1.4.6 compositeDevice

	3.1.3.3.1.5 Operations
	3.1.3.3.1.5.1 allocateCapacity
	3.1.3.3.1.5.1.1 Brief Rationale
	3.1.3.3.1.5.1.2 Synopsis
	3.1.3.3.1.5.1.3 Behavior
	3.1.3.3.1.5.1.4 Returns
	3.1.3.3.1.5.1.5 Exceptions/Errors

	3.1.3.3.1.5.2 deallocateCapacity
	3.1.3.3.1.5.2.1 Brief Rationale
	3.1.3.3.1.5.2.2 Synopsis
	3.1.3.3.1.5.2.3 Behavior
	3.1.3.3.1.5.2.4 Returns
	3.1.3.3.1.5.2.5 Exceptions/Errors

	3.1.3.3.1.5.3 releaseObject
	3.1.3.3.1.5.3.1 Description
	3.1.3.3.1.5.3.2 Synopsis
	3.1.3.3.1.5.3.3 Behavior
	3.1.3.3.1.5.3.4 Returns
	3.1.3.3.1.5.3.5 Exceptions/Errors

	3.1.3.3.2 LoadableDevice
	3.1.3.3.2.1 Description
	3.1.3.3.2.2 UML
	3.1.3.3.2.3 Types
	3.1.3.3.2.3.1 LoadType
	3.1.3.3.2.3.2 InvalidLoadKind
	3.1.3.3.2.3.3 LoadFail.

	3.1.3.3.2.4 Attributes
	3.1.3.3.2.5 Operations
	3.1.3.3.2.5.1 load
	3.1.3.3.2.5.1.1 Brief Rationale
	3.1.3.3.2.5.1.2 Synopsis
	3.1.3.3.2.5.1.3 Behavior
	3.1.3.3.2.5.1.4 Returns
	3.1.3.3.2.5.1.5 Exceptions/Errors

	3.1.3.3.2.5.2 unload
	3.1.3.3.2.5.2.1 Brief Rationale
	3.1.3.3.2.5.2.2 Synopsis
	3.1.3.3.2.5.2.3 Behavior
	3.1.3.3.2.5.2.4 Returns
	3.1.3.3.2.5.2.5 Exceptions/Errors

	3.1.3.3.3 ExecutableDevice
	3.1.3.3.3.1 Description
	3.1.3.3.3.2 UML
	3.1.3.3.3.3 Types
	3.1.3.3.3.3.1 InvalidProcess
	3.1.3.3.3.3.2 InvalidFunction
	3.1.3.3.3.3.3 ProcessID_Type
	3.1.3.3.3.3.4 InvalidParameters
	3.1.3.3.3.3.5 InvalidOptions
	3.1.3.3.3.3.6 STACK_SIZE_ID
	3.1.3.3.3.3.7 PRIORITY_ID
	3.1.3.3.3.3.8 ExecuteFail

	3.1.3.3.3.4 Attributes
	3.1.3.3.3.5 Operations
	3.1.3.3.3.5.1 execute
	3.1.3.3.3.5.1.1 Brief Rationale
	3.1.3.3.3.5.1.2 Synopsis
	3.1.3.3.3.5.1.3 Behavior
	3.1.3.3.3.5.1.4 Returns
	3.1.3.3.3.5.1.5 Exceptions/Errors

	3.1.3.3.3.5.2 terminate
	3.1.3.3.3.5.2.1 Brief Rationale
	3.1.3.3.3.5.2.2 Synopsis
	3.1.3.3.3.5.2.3 Behavior
	3.1.3.3.3.5.2.4 Returns
	3.1.3.3.3.5.2.5 Exceptions/Errors

	3.1.3.3.4 AggregateDevice
	3.1.3.3.4.1 Description
	3.1.3.3.4.2 UML
	3.1.3.3.4.3 Types
	3.1.3.3.4.4 Attributes
	3.1.3.3.4.4.1 devices

	3.1.3.3.4.5 Operations
	3.1.3.3.4.5.1 addDevice
	3.1.3.3.4.5.1.1 Brief Rationale
	3.1.3.3.4.5.1.2 Synopsis
	3.1.3.3.4.5.1.3 Behavior
	3.1.3.3.4.5.1.4 Returns
	3.1.3.3.4.5.1.5 Exceptions/Errors

	3.1.3.3.4.5.2 removeDevice
	3.1.3.3.4.5.2.1 Brief Rationale
	3.1.3.3.4.5.2.2 Synopsis
	3.1.3.3.4.5.2.3 Behavior
	3.1.3.3.4.5.2.4 Returns
	3.1.3.3.4.5.2.5 Exceptions/Errors

	3.1.3.4 Framework Services Interfaces
	3.1.3.4.1 File
	3.1.3.4.1.1 Description
	3.1.3.4.1.2 UML
	3.1.3.4.1.3 Types
	3.1.3.4.1.3.1 IOException
	3.1.3.4.1.3.2 InvalidFilePointer

	3.1.3.4.1.4 Attributes
	3.1.3.4.1.4.1 fileName
	3.1.3.4.1.4.2 filePointer

	3.1.3.4.1.5 Operations
	3.1.3.4.1.5.1 read
	3.1.3.4.1.5.1.1 Brief Rationale
	3.1.3.4.1.5.1.2 Synopsis
	3.1.3.4.1.5.1.3 Behavior
	3.1.3.4.1.5.1.4 Returns
	3.1.3.4.1.5.1.5 Exceptions/Errors

	3.1.3.4.1.5.2 write
	3.1.3.4.1.5.2.1 Brief Rationale
	3.1.3.4.1.5.2.2 Synopsis
	3.1.3.4.1.5.2.3 Behavior
	3.1.3.4.1.5.2.4 Returns
	3.1.3.4.1.5.2.5 Exceptions/Errors

	3.1.3.4.1.5.3 sizeOf
	3.1.3.4.1.5.3.1 Brief Rationale
	3.1.3.4.1.5.3.2 Synopsis
	3.1.3.4.1.5.3.3 Behavior
	3.1.3.4.1.5.3.4 Returns
	3.1.3.4.1.5.3.5 Exceptions/Errors

	3.1.3.4.1.5.4 close
	3.1.3.4.1.5.4.1 Brief Rationale
	3.1.3.4.1.5.4.2 Synopsis
	3.1.3.4.1.5.4.3 Behavior
	3.1.3.4.1.5.4.4 Returns
	3.1.3.4.1.5.4.5 Exceptions/Errors.

	3.1.3.4.1.5.5 setFilePointer
	3.1.3.4.1.5.5.1 Brief Rationale
	3.1.3.4.1.5.5.2 Synopsis
	3.1.3.4.1.5.5.3 Behavior
	3.1.3.4.1.5.5.4 Returns
	3.1.3.4.1.5.5.5 Exceptions/Errors

	3.1.3.4.2 FileSystem
	3.1.3.4.2.1 Description
	3.1.3.4.2.2 UML
	3.1.3.4.2.3 Types
	3.1.3.4.2.3.1 UnknownFileSystemProperties.
	3.1.3.4.2.3.2 fileSystemProperties Query Constants
	3.1.3.4.2.3.3 FileInformationType
	3.1.3.4.2.3.4 FileInformationSequence
	3.1.3.4.2.3.5 FileType
	3.1.3.4.2.3.6 CREATED_TIME_ID
	3.1.3.4.2.3.7 MODIFIED_TIME_ID
	3.1.3.4.2.3.8 LAST_ACCESS_TIME_ID

	3.1.3.4.2.4 Attributes
	3.1.3.4.2.5 Operations
	3.1.3.4.2.5.1 remove
	3.1.3.4.2.5.1.1 Brief Rationale
	3.1.3.4.2.5.1.2 Synopsis
	3.1.3.4.2.5.1.3 Behavior
	3.1.3.4.2.5.1.4 Returns
	3.1.3.4.2.5.1.5 Exceptions/Errors

	3.1.3.4.2.5.2 copy
	3.1.3.4.2.5.2.1 Brief Rationale
	3.1.3.4.2.5.2.2 Synopsis
	3.1.3.4.2.5.2.3 Behavior
	3.1.3.4.2.5.2.4 Returns
	3.1.3.4.2.5.2.5 Exceptions/Errors

	3.1.3.4.2.5.3 exists
	3.1.3.4.2.5.3.1 Brief Rationale
	3.1.3.4.2.5.3.2 Synopsis
	3.1.3.4.2.5.3.3 Behavior
	3.1.3.4.2.5.3.4 Returns
	3.1.3.4.2.5.3.5 Exceptions/Errors

	3.1.3.4.2.5.4 list
	3.1.3.4.2.5.4.1 Brief Rationale
	3.1.3.4.2.5.4.2 Synopsis
	3.1.3.4.2.5.4.3 Behavior
	3.1.3.4.2.5.4.4 Returns
	3.1.3.4.2.5.4.5 Exceptions/Errors

	3.1.3.4.2.5.5 create
	3.1.3.4.2.5.5.1 Brief Rationale
	3.1.3.4.2.5.5.2 Synopsis
	3.1.3.4.2.5.5.3 Behavior
	3.1.3.4.2.5.5.4 Returns
	3.1.3.4.2.5.5.5 Exceptions/Errors

	3.1.3.4.2.5.6 open
	3.1.3.4.2.5.6.1 Brief Rationale
	3.1.3.4.2.5.6.2 Synopsis
	3.1.3.4.2.5.6.3 Behavior
	3.1.3.4.2.5.6.4 Returns
	3.1.3.4.2.5.6.5 Exceptions/Errors

	3.1.3.4.2.5.7 mkdir
	3.1.3.4.2.5.7.1 Brief Rationale
	3.1.3.4.2.5.7.2 Synopsis
	3.1.3.4.2.5.7.3 Behavior
	3.1.3.4.2.5.7.4 Returns.
	3.1.3.4.2.5.7.5 Exceptions/Errors

	3.1.3.4.2.5.8 rmdir.
	3.1.3.4.2.5.8.1 Brief Rationale
	3.1.3.4.2.5.8.2 Synopsis
	3.1.3.4.2.5.8.3 Behavior
	3.1.3.4.2.5.8.4 Returns
	3.1.3.4.2.5.8.5 Exceptions/Errors

	3.1.3.4.2.5.9 query
	3.1.3.4.2.5.9.1 Brief Rationale
	3.1.3.4.2.5.9.2 Synopsis
	3.1.3.4.2.5.9.3 Behavior
	3.1.3.4.2.5.9.4 Returns
	3.1.3.4.2.5.9.5 Exceptions/Errors

	3.1.3.4.3 FileManager
	3.1.3.4.3.1 Description
	3.1.3.4.3.2 UML
	3.1.3.4.3.3 Types
	3.1.3.4.3.3.1 MountType
	3.1.3.4.3.3.2 MountSequence
	3.1.3.4.3.3.3 NonExistentMount
	3.1.3.4.3.3.4 MountPointAlreadyExists
	3.1.3.4.3.3.5 InvalidFileSystem

	3.1.3.4.3.4 Attributes
	3.1.3.4.3.5 Operations
	3.1.3.4.3.5.1 mount
	3.1.3.4.3.5.1.1 Brief Rationale
	3.1.3.4.3.5.1.2 Synopsis
	3.1.3.4.3.5.1.3 Behavior
	3.1.3.4.3.5.1.4 Returns.
	3.1.3.4.3.5.1.5 Exceptions/Errors.

	3.1.3.4.3.5.2 unmount
	3.1.3.4.3.5.2.1 Brief Rationale
	3.1.3.4.3.5.2.2 Synopsis
	3.1.3.4.3.5.2.3 Behavior
	3.1.3.4.3.5.2.4 Returns
	3.1.3.4.3.5.2.5 Exceptions/Errors

	3.1.3.4.3.5.3 getMounts
	3.1.3.4.3.5.3.1 Brief Rationale
	3.1.3.4.3.5.3.2 Synopsis
	3.1.3.4.3.5.3.3 Behavior
	3.1.3.4.3.5.3.4 Returns
	3.1.3.4.3.5.3.5 Exceptions/Errors

	3.1.3.4.3.5.4 File System Operations.
	3.1.3.4.3.5.5 query
	3.1.3.4.3.5.5.1 Brief Rationale
	3.1.3.4.3.5.5.2 Synopsis
	3.1.3.4.3.5.5.3 Behavior
	3.1.3.4.3.5.5.4 Returns
	3.1.3.4.3.5.5.5 Exceptions/Errors

	3.1.3.5 Domain Profile
	3.1.3.5.1 Software Package Descriptor
	3.1.3.5.2 Software Component Descriptor
	3.1.3.5.3 Software Assembly Descriptor
	3.1.3.5.4 Properties Descriptor
	3.1.3.5.5 Device Package Descriptor
	3.1.3.5.6 Device Configuration Descriptor
	3.1.3.5.7 Profile Descriptor
	3.1.3.5.8 DomainManager Configuration Descriptor

	3.1.3.6 Core Framework Base Types
	3.1.3.6.1 DataType
	3.1.3.6.2 DeviceSequence
	3.1.3.6.3 FileException
	3.1.3.6.4 InvalidFileName
	3.1.3.6.5 InvalidObjectReference
	3.1.3.6.6 InvalidProfile
	3.1.3.6.7 OctetSequence
	3.1.3.6.8 Properties
	3.1.3.6.9 StringSequence
	3.1.3.6.10 UnknownProperties
	3.1.3.6.11 DeviceAssignmentType
	3.1.3.6.12 DeviceAssignmentSequence
	3.1.3.6.13 ErrorNumberType.

	3.2 APPLICATIONS
	3.2.1 General Application Requirements
	3.2.1.1 OS Services
	3.2.1.2 CORBA Services
	3.2.1.3 CF Interfaces

	3.2.2 Application Interfaces
	3.2.2.1 Service Definitions

	3.3 LOGICAL DEVICE
	3.3.1 OS Services
	3.3.2 CORBA Services.
	3.3.3 CF Interfaces
	3.3.4 Profile

	3.4 GENERAL SOFTWARE RULES
	3.4.1 Software Development Languages
	3.4.1.1 New Software
	3.4.1.2 Legacy Software

	4 ARCHITECTURE COMPLIANCE
	4.1 CERTIFICATION AUTHORITY
	4.2 SPECIFICATION AUTHORITY
	4.3 RESPONSIBILITY FOR COMPLIANCE EVALUATION
	4.4 EVALUATING COMPLIANCE
	4.5 REGISTRATION.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

