
API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 1
http://www.rooftop.com

API Framework for Internet Radios
Version: 11 September 1998; v2.03

Authors: 1 Dave Beyer (dave@rooftop.com),
Thane Frivold, John Hight of Rooftop
Communications

Mark Lewis (lewis@erg.sri.com)
of SRI International

1 Purpose
Software protocols for advanced wireless networks are being designed, tested, and fielded by a variety of
organizations including: Rooftop Communications, University of California, Santa Cruz, SRI
International, Bolt Beranek and Newman, and the University of California, Los Angeles. Additionally, a
variety of organizations including Raytheon, UCLA, Virginia Polytechnic Institute, ITT, Utilicom and
Hazeltine are developing next generation, highly-programmable digital radios and antennas to provide
the reliable and flexible wireless links for such networks. These future networks promise to support
efficient, reliable, and secure communication of multimedia traffic over rapidly-deployed, multihop
wireless infrastructures, that can serve as seamless extensions of the Internet.

This API Framework was developed to facilitate both collaboration and independent development of
individual modules for these systems. The intent is to allow these modules to be easily integrated, or
“mixed and matched,” into advanced, wireless networking systems (or Internet Radios).

Specifically, this API Framework is intended to:
• Introduce a concise, platform-independent, language and methodology that can be used to

define the interface between “upper” and “lower” modules in a system,
• Provide standard methods for permitting module-specific extensions,
• Foster cross-organization collaboration between developers of these modules, and
• Facilitate porting of various modules among multiple platforms.

The API Framework is based on the definition of a set of generic “primitives” that can be mapped to various
software and hardware implementations, as appropriate for the particular system environment. For a
particular API, these primitives define the functional interface between a “lower module” that provides a
service, and an “upper module” that is a user of that service. Physical communication of API primitives
across an interface is then defined by specification of an implementation mechanism. For example, a C-
based software interface implementation is defined by the “Generic Device Driver” specification.2 Other
successful implementations include a mapping to the Unix IOCTL mechanism,3 and a serial message
passing implementation.4

In summary, there are three levels of specification for these APIs:

1. API Framework; a set of consistent, API-independent tools (including the various types of API
“primitives”) for defining the APIs (see Section 2).

2. API Definition; the implementation-independent description of the API (see Sections 3, 4, and
the API-specific definition documents which extend the “Core” APIs in this document).5

3. API Implementation Mechanism; the description of how any given API Definition can be mapped
to a particular physical hardware or software implementation.6

1 This work was supported by the U.S. Government. Refer to the Acknowledgments section for details.
2 Available via http://www.rooftop.com , click on Radio Interface.
3 Contact Mark Lewis (lewis@erg.sri.com) for specification.
4 Specification defined by 9 April 1998 email by Fred Templin (templin@erg.sri.com) titled “An Encoding of Radio
API Primitives for the ISI APT Radio via the SLIP Protocol.”
5 The “Radio Device API” document is an example.

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 2
http://www.rooftop.com

2 API Framework
This section introduces the framework used to define the GloMo APIs. It consists of the following three
major components:

• Primitives (the basic operations of the API), and
• Qualifiers (flags and other action specifiers that are applicable to many of the primitives),
• Return Codes (status codes returned from the lower module to the upper module).

Implementation mechanisms should provide 32-bit fields for the identification of these primitives and
return codes, and also a 32-bit field for the selection of appropriate qualifiers for each operation.
In addition, API definition inheritance, API information structures, and API compatibility are discussed.

2.1 Primitives
The basic information element of each API is called a “primitive”. There are four types of primitives, as
described in the following table and illustrated in Figure 1.

2.1.1 Commands
Commands are asynchronous upper-to-lower module primitives for performing immediate, typically
non-persistent actions. Commands often result in an immediate Response followed later by one or more
Signals from the lower module.

2.1.2 Variables
Control state characteristics and measurement status information of the lower module are
communicated using Variable primitives. Variables support one or more of the set, get, increment, or
clear synchronous access operations (see Core API Qualifiers in Section 3.1).

Also, variable groups allow for the upper module to access a group of variables with one operation. (See
“Core API Variables and Variable Groups,” Section 3.2.2).

Individual or grouped variable operations that are not associated with some transient event control the
“persistent” state of the variable. Certain other transient variable operations (such as those associated
with a time slot or a packet transmission or reception, see Section 4.1) control the “transient” state of the
variable. The transient state of a variable takes precedence over the persistent state. However, once the
event associated with the transient state is no longer active (e.g., the corresponding packet completes
transmission), the state of the variable is returned to its persistent state.

2.1.3 Responses
Responses report the synchronous lower-module result to an upper module’s command or variable
operation. For a software-based implementation (such as the “Generic Device Driver” implementation),

6 The “Generic Device Driver” document describes how the primitives, qualifiers, and return codes for any API
following this framework are mapped to a C-based, function-call software interface.

Figure 1: Basic Types of API Primitives

The
“Upper Module”

The
“Lower Module”

Commands

Signals

Variables
set/get/inc/clr

Responses

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 3
http://www.rooftop.com

this is typically handled using the return value from the Command or Variable function call. For a
packet- or shared buffer-based implementation, the Response could be returned in a separate packet or
buffer or by setting a field in a shared buffer and switching an ownership flag. For Commands, the
Response often indicates whether or not the Command has been received correctly and can be acted
upon, with one or more Signals reporting the result of the action later.

2.1.4 Signals
Signals are asynchronous lower-to-upper module primitives for reporting recent, typically non-
persistent events. The lower module should support the selective enabling and disabling of each of its
supported signals through the API. (See the VarSignalEnable Core API variable in Section 3.2.2).

2.2 Qualifiers
Each primitive can be qualified to give more specific instructions such as specifying the “channel” or
specifying which section (e.g., xmt or rcv) the operation should be applied. Of course, individual
qualifiers will only be relevant to lower modules that support the corresponding capabilities.
A special info qualifier defined in the Core API is used with variable operations to allow the upper
module to learn the capabilities (e.g., read/write support, range of valid values, default value) of the
lower module with regards to a particular variable (see Section 3.1.1).

2.3 Return Codes
Each API also defines a set of return codes to provide a standard means for the lower module to indicate
the success or failure status in each Response to Command and Variable operations, and in each
asynchronous Signal delivered to the upper module.

2.4 API Definition Inheritance
The method used to implement an API must allow for each of the above categories of primitives,
qualifiers, and return codes to be extended, to permit definition of APIs to modules that inherit and then
extend the API to a less-specific (more abstract) module class. For instance, a common header file7 can
be used to assign the numbering ranges for the primitives for each API, as well as assign numeric
identifiers for each primitive in these APIs. A constant named “API_END_<API Name>_<Primitive
Type>” can then be used to serve as the starting number for API-specific extension primitives to a
particular API, at least until these extension primitives are formally added to the base API class, or until
this API extension is formally recognized as a derived class with its own primitive numbering range.
Also, locally derived classes can be defined using numbering ranges above the constant
“API_START_USER.”

The following figure presents the API hierarchy for modules be ng defined to date within the GloMo
program following this API framework. (This document only includes the definitions of the “Core API”
and the “Core Packet API.” Note that unless a module needs particular extensions, it may be
implemented using only a “Core” specification. An example is Ethernet and SLIP Framing modules that
may be implemented using only the Core Packet API.)

7 C- and C++-compatible header files with primitive range assignments for various APIs, and with actual primitive
assignments for the Core and Radio Device API primitives are available through the www.rooftop.com web-site.

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 4
http://www.rooftop.com

2.5 API Information Structures
In many cases, API operations involve mainly the passing of an identifier for the primitive (Command,
Variable, Signal, or Response), and possibly, one single-word parameter value. However, in other cases,
API primitives operations require the communication of an information structure with multiple,
possibly multi-word parameters from the upper module to the lower module or vice versa. Examples
include communication of packet buffers for transmission or reception, transceiver characteristics to be
used for particular transmissions or receptions, or operations that reference multiple variables (e.g.,
variable “groups”). For these cases, the following rules apply to the API implementation mechanism
used to communicate these structures:

Ø For Command operations, the “access rights” of the API information structure, and any
information referenced by it, is passed from the upper module to the lower module. The upper
module should make no changes to the contents of this structure while the lower module owns
the access rights to it. Access rights to the structure is then returned to the upper module using
either a Signal operation (e.g., for packet transmission or reception operations), or a Response
to a Command.8

Ø As is the case for the API primitives, return codes, and qualifiers, the implementation
mechanism must also define API information structures in a way that facilitates extensions. For
instance, a C++-based implementation mechanism could use object “classes” to define
information structures and use derived classes for extensions. A C-based implementation
could use “structs” for the information structures, and then include these structs at the start of
new structs for extensions. For instance a C-based implementation of a packet-based API might
define the following information structure:

typedef struct {
uint32 signature; // Unique ID of this struct type
bytep buf; // points to start of packet buffer
uint32 bufLen; // len of data in packet buffer

…
} PktInfo;

This structure could then be extended to add transmission timing by doing the following:

8 For software-based implementations, these information structures are typically “owned” by the upper module.
Thus, the upper module is responsible for allocating and freeing these packet information structures after access
rights have been returned.

Core
API

Core
Packet API

Radio
Device

TDMA
Radio

Smart
Antenna

Link
API

Core Serial
Device

Modem
Device

Audio
Device

Figure 2: API Inheritance Hierarchy

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 5
http://www.rooftop.com

typedef struct {
PktInfo pktInfo; // Parent’s information structure
uint32 signature; // Unique ID for this new struct type
uint32 xmtTime_s; // Transmit time, seconds
uint32 xmtTime_us; // Transmit time, usecs

…
} TimedPktInfo;

In this implementation, the type or extended-type of each information structure can be uniquely
identified and verified using the combination of: 1) which primitive the information struct is
associated with; 2) the length of the information struct (passed as an argument), and 3) the
unique signature in the information struct itself. (Merely association of the information
structure with a particular primitive will typically be sufficient when only a parent’s base
information structure type is being used.)

2.6 Degrees of API Compatibility
The API Framework distinguishes varying degrees of compatibility between upper and lower modules.
Differences between modules are categorized into the following three main types:

1. Derivation conflict The upper and lower modules’ level of support (in the API’s
Definition inheritance tree) differ. For example, the upper module
can take advantage of radios supporting the “TDMA Radio” API,
but the lower module only supports the “Radio Device” API. This
can be detected by the upper module using the Core API’s
“VarClass” variable (see Section 3.2.2).

2. Version conflict The upper and lower modules were created using different versions
of the API Definition. This can be detected by the upper module
using the Core API’s “VarVersion” variable primitive (see Section
3.2.2).

3. Mechanism conflict The upper and lower modules were created using different physical
implementation mechanisms. Of course, this will be detected
during the process of attempting to integrate the two modules.

In the first two cases, effective operation may still be possible, either by having the upper-module adapt
to using only the limited capabilities of the lower-module (when the upper module supports a more
recent, or more derivation-specific, API), or by having the upper-module function normally although it
would only utilize a subset of the lower module’s capabilities (when the lower module supports a more
recent, or more derivation-specific, API). In the third case, some development effort would be required.
This may involve either:

Ø development of an “API mapper” to convert and forward the primitive operations between
the two API implementation mechanisms, or

Ø redesign of either the upper or lower module to adopt the implementation mechanism of the
other.

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 6
http://www.rooftop.com

3 Core API Definition
This section gives the logical definition of the Core API. It is divided according to the major API
components:
• Qualifiers
• Primitives
• Return Codes

3.1 Core API Qualifiers
The following table lists the Core API qualifiers, defined for all APIs.

get Indicates that the primitive should support get operations. If only
get (and not set or inc) is specified, then the variable is read-only.

set Indicates that the primitive should support set or increment
operations. If only set (and not get) is specified, then the variable is
write-only.

clr Indicates that the primitive should support clear operation. Clear
will return the state of variables to their default state.

inc Indicates that the primitive should support the increment operation.
If only inc (and not get) is specified, then the variable is write-only.
Increment operations instruct the lower module to add the (possibly
negative) value passed to the current value. Note that while in a
given mode, variables typically support either set or inc but not
both.9

info Used with any variable primitive to retrieve the lower module’s
capabilities with respect to a particular variable. No other qualifier
is permitted in conjunction with the use of the info qualifier

isr Indicates whether running within hardware interrupt or a
“foreground” software processor mode in Signal primitives handled
as function callbacks.

For variable primitives that support both get and set (or inc) operations, a single variable primitive
operation can be used to perform both operations at once. In this case, the operation sets the variable
according to the data passed, and returns the value the variable had prior to the set.

3.1.1 The info qualifier -- Implementation-dependent Capabilities
The info qualifier can be used with any variable primitive to retrieve the lower module’s capabilities
with respect to a particular variable. No other qualifier is permitted in conjunction with the use of the
info qualifier. For each info operation on a particular variable, the lower module returns the following
information:

• The type of variable equal to one of {VarTypeSingle, VarTypeRange, VarTypeTable}.

Ø VarTypeSingle variables only have a single value (and thus are typically read-only).

Ø VarTypeRange variables can have a range of values, and

9 There are exceptions, such as initially setting, and then incrementally modifying, the network time through the
API to a time-aware packet communication device.

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 7
http://www.rooftop.com

Ø VarTypeTable variables may be set to a particular index into a table, corresponding to
particular setting for this variable.

• The read/write permissions of the variable equal to one of {VarPermitRead,
VarPermitWrite, VarPermitReadWrite}.

• A flag indicating whether this variable can be accessed only through variable group
operations on the appropriate group(s) (as is typically the case when a variable’s setting is
dependent on the setting of one or more other variables).

• The default value of the variable (or default index for VarTypeTable variables).

• The allowed values for VarTypeRange and VarTypeTable variables, specified as follows:

Ø For VarTypeRange variables, the minimum and maximum allowed values, and the
resolution (or “step-size”).

Ø For VarTypeTable variables, a list of the allowed settings, indexed (from 0) in the same
way that these variables should be referred to in subsequent set or get operations. For
example, if the variable “VarXmtPower” can be set to one of the following settings {0, 10,
20, 40} dBm, then setting the variable to 2 will cause the XmtPower to be set to 20 dBm.

3.2 Core API Primitives
This Section lists the Core API primitives, defined for all APIs. Each primitive is labeled with
Mandatory, Highly desirable, Desirable, or Optional, indicating the degree of requirement. The “Data”
field indicates the generic input and/or output data communicated across the API by each primitive.

3.2.1 Commands
The Core API defines the following command primitives:

CmdReset Command
Requirement: Mandatory

Qualifiers:
Data:

Description: A command used to reset the lower module. The lower
module should “play dead” until receiving its first CmdReset
command following power-up.

CmdNativeConsole Command
Requirement: Optional

Qualifiers:
Data: String to be delivered to lower module’s “console,” and the

returned response string.
Description: Send a command string to the lower module’s native

“console” and return the user-response string, if any. The
lower module’s native console typically refers to the ASCII
command interpreter that may be available to the user by
connecting a dumb terminal (or terminal emulator) directly to
a serial port attached to the lower module.

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 8
http://www.rooftop.com

CmdProcExec Command
Requirement: Optional

Qualifiers:
Data: Diagnostic or other procedure to execute.

Description: Used to direct the lower module to execute a specific built-in
test, or other built-in procedure. The results of the test are
returned asynchronously via a SigProcResults signal.

3.2.2 Variables and Variable Groups
The Core API defines the following variable primitives:

3.2.2.1 Name, Version, and SigEnable Variables

VarVersion Variable
Requirement: Mandatory

Qualifiers: get
Data: Returned string

Description: A read-only variable that provides a type and version string
of the lower module. This string is typically “hard-wired”
into each particular release of this lower module,
incrementing the version between releases. The format is an
ASCII string of numbers separated by periods, optionally
followed by a semicolon and free-form text. For example,
 2.0.1; 2 July 1998 rev

VarName Variable
Requirement: Mandatory

Qualifiers: get
Data: Returned string

Description: A read-only variable that provides the name of this API,
possibly appended by an “API instance” name provided by
the upper module during initialization or configuration. The
format is an ASCII string identifying the API, optionally
followed by a semicolon and the name provided by the
upper module during initialization: For example,
 Radio Device API; Utilicom 2020 driver 1

VarClass Variable
Requirement: Highly Desirable

Qualifiers: get
Data: Class identifier

Description: A read-only variable that provides the class of this API. The
format is API-dependent. For C & C++ APIs, the identifier
is a bit-mask with bits indicating the classes that this API is a
member of in the inheritance tree. For example, the Radio
Device API will be a member of the Radio Device API, Core
Packet API, and Core API classes.

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 9
http://www.rooftop.com

VarStatus Variable
Requirement: Highly Desirable

Qualifiers: get
Data: Lower-module status

Description: A read-only variable that provides the lower-module’s
overall status. A significant change in status can be reported
by the lower-module using the SigStatus signal.

VarSignalEnable Variable
Requirement: Highly Desirable

Qualifiers: get/set
Data: For a set: the Signal code, or SigAll, and TRUE or FALSE to

enable or disable the signal. For a get: the Signal code with
TRUE or FALSE being returned.

Description: Allows the upper module to enable or disable individual
signals, or to check on the enabled state of signals. The
special SigAll Signal code can be used to enable or disable all
signals at once.

3.2.2.2 Variables for Managing Variable Groups

Variable groups permit more efficient and convenient reference to lists of API variables. Variable groups
are composed of lists of {variable name, value} pairs. Each variable group belongs to a particular
variable group class. Each variable group class has a unique numeric identification and name (accessible
using VarGroupClassName), and specifies the precise set and ordering of the individual variables that
make up variable group instances of that class (or “class instances”). VarGroupClassSize gives the
number of variables that comprise this variable group class. Individual variable groups are then
identified using the variable group class ID along with the appropriate variable group class instance
number, which ranges from 0 to VarGroupClassInstances (for that variable group class) – 1. Two class
instances are always defined for every variable group class, and are not included in the above
VarGroupClassInstances count:

• VarGroupInstanceDefault: a read-only group that lists the default values of all the variables
in the specified variable group class.

• VarGroupInstanceCurrent: a read/write group (for classes that permit write operations)
that lists or sets the current “persistent” state of the variables in this group.

A variable group class that supports only the Default and Current class instances will have
VarGroupClassInstances equal to 0. There are three main uses for variable groups:

1. To provide a convenient way to access or select the (often long) list of behavior and/or
configuration characteristics of the lower module. These group classes are defined only by
the lower module.

For instance, for a radio device, a read-only behavior group class might include the time
required to change frequencies (RadioVarFreqChangeDelay), and the typical time required
to obtain preamble synchronization to an incoming packet (RadioVarPreambleSyncTime);
and a read/write configuration group class might include the modulation selection
(RadioVarModulationType) and the scrambling algorithm selection
(RadioVarScramblingMode). Also, multiple instances of a configuration group class may be

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 10
http://www.rooftop.com

pre-defined by the lower module to allow the upper module to easily select a particular
configuration.

2. To group mutually dependent variables into a read-only variable group class, with the
individual instances representing the combinations of settings for this variable group. These
group classes are also only defined by the lower module.

For instance, for a radio device, the transmit bit rate (RadioVarBitRate), direct-sequence
chipping rate (RadioVarCodeRate), and the number of chips per bit (RadioVarCodingGain)
may be inter-dependent variables. Using groups, the specific radio device API can provide
a variable group class called something like “Radio Group Xmt Rates” which consists of
these three variables, and then provide a set of class instances that specify the permitted
alternatives.

3. To permit the upper module to dynamically define custom variable group classes, and class
instances, to permit more efficient reference to a related list of variable settings with one
operation. These group classes are defined only by the upper module.

For instance, for network protocols controlling a radio device, the protocols may determine
an optimal set of radio transmit parameters to use when communicating with each of it’s
neighboring network nodes. This parameter list might include transmit power
(RadioVarXmtPower), error-correcting code rate (RadioVarFecRate), and direct-sequence
spreading code (RadioVarCode). By defining a variable group class (using
VarGroupClassDefine) named “Radio Group Neighbor Xmt Characteristics”, and then
setting individual instance of this class for each of its neighbors (using VarGroupValues), the
protocols can easily switch to the proper parameters simply by selecting the proper instance
of this new variable group class (using VarGroupSelect).

VarGroupDefineNumMax is a read-only variable that returns the maximum number of dynamically-
defined groups supported by the lower module.

VarGroupSelect Variable
Requirement: Highly Desirable

Qualifiers: set
Data: groupClassId, groupInstanceNum

Description: Commands the lower module to switch to the variable
characteristics specified by the identified variable group. The
group instance number may be an integer from 0 to
VarGroupClassInstances - 1, or one of
VarGroupInstanceDefault, or VarGroupInstanceCurrent. This
VarGroupSelect primitive can be used anywhere a single-value
variable primitive can be used across the API. Thus, the API
implementation must encode the {groupClassId,
groupInstanceNum} in a way to permit it to be passed in place
of the value for primitive operations.10

VarGroupValues Variable
Requirement: Highly Desirable

Qualifiers: get (and set for writeable groups)

10 For example, the Generic Device Driver implementation mechanism encodes the class & instance into a 32-bit
integer using the upper 16 bits for the class ID and the lower 16 bits for the instance number.

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 11
http://www.rooftop.com

Data: groupClassId, groupInstanceNum and the list of {variable
name, variable value} pairs corresponding to this class.

Description: Although the variable names are actually not required (since
the variable class defines this list and ordering of variables),
they are included here as a consistency check.

VarGroupClassName Variable
Requirement: Highly Desirable

Qualifiers: get
Data: string

Description: Returns the name of this variable group class.

VarGroupClassSize Variable
Requirement: Highly Desirable

Qualifiers: get
Data: Input the groupClassId and returns the number of variables in

this variable group class.
Description: Used to retrieve the number of variables in (i.e., the size of) the

specific variable group class.

VarGroupClassInstances Variable
Requirement: Highly Desirable

Qualifiers: get (and set for dynamically-defined classes)
Data: Input groupClassId, and returns the number of instances for

this class.
Description: Used to retrieve the number of variable groups defined for this

variable group class.

Optional variable group primitives to support upper-module definition of new variable groups include
the following:

VarGroupClassDefine Variable
Requirement: Optional

Qualifiers: set
Data: groupClassId, className, classSize, classInstances, and the list

and ordering of variables that define this variable group class.
Description: groupClassId may be an integer from 0 to

VarGroupDefineNumMax.

VarGroupDefineNumMax Variable
Requirement: Mandatory

Qualifiers: get
Data: The maximum number of dynamically-defined groups

Description: The lower module returns the maximum number of
dynamically-defined groups supported by the lower module.

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 12
http://www.rooftop.com

3.2.3 Signals
The Core API defines the following signal primitives:

SigAll Signal
Requirement: Mandatory

Qualifiers:
Data:

Description: A special Signal code used only in conjunction with
VarSignalEnable variable operations. (See description of
VarSignalEnable.)

SigError Signal
Requirement: Mandatory

Qualifiers: isr
Data: A number indicating the error, as defined in the lower-

module-specific header file.
Description: A signal indicating that a lower-module error has occurred.

SigStatus Signal
Requirement: Highly Desirable

Qualifiers: isr
Data: A number indicating the new lower-module status.

Description: A signal indicating that a significant (but “non-Error”)
change has occurred to the status of the lower-module. The
lower-module status can also be queried at any time by the
upper-module using the VarStatus variable.

SigProcResults Signal
Requirement: Desirable

Qualifiers: isr
Data: Procedure results

Description: A signal generated at the completion of a diagnostic test, or
other built-in procedure. The procedure may have been
executed as a result of a CmdProcExec command, or due to
some other event such as built-in tests executed upon
power-up.

3.2.4 Summary of Core API Primitives
Table 1 summarizes the names, degree of requirement (M-Mandatory, H-Highly desirable, D-Desirable,
O-Optional), qualifiers, and data for each of the Core API’s logical primitives.

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 13
http://www.rooftop.com

Table 1: Summary of Core API Primitives
Commands Rqmt Qualifiers Data

CmdReset M
CmdNativeConsole O User cmd string and response string.
CmdProcExec O Diagnostic, or other procedure, to exec.

Variables Rqmt Qualifiers Data

VarVersion M get Version string (e.g., “2.0.1; 2 July 1998”)
VarName M get Name string given to lower module
VarClass H get API Class identifier
VarStatus H get Lower-module status
VarSigEnable H get/set Signal number to enable or disable
VarGroupSelect H set groupClassId, groupInstanceNum
VarGroupValues H get (set) groupClass & instance, {var, value} pairs
VarGroupClassName H get Group class name string
VarGroupClassSize H get Group class size (number of variables)
VarGroupClassInstances H get returns # of instances given groupClassId
VarGroupClassDefine O set groupClassId, name, size, instances, var list
VarGroupDefineNumMax O get # of dynamically-defined groups supported

Signals Rqmt Qualifiers Data

SigAll11 M
SigError M isr Number indicating the error.
SigStatus H isr Number indicating the new status.
SigProcResults D isr Results of a CmdProcExec.

3.3 Core API Return Codes
The following table lists the Core API Return Codes, defined for all APIs.

11 Used by protocols in conjunction with VarSignalEnable to enable or disable all supported signals at once; never
generated by the lower-module.

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 14
http://www.rooftop.com

RetOk Operation accepted or successfully performed.
RetFail General request failure.
RetNoInit Lower module not initialized.
RetTimeOut Request timed out.
RetMemOut Lower module is out of memory.
RetHwFail Hardware failure. A strong suggestion that the upper module should

issue a CmdReset command.
RetInvVersion Invalid API version number (or version not supported)
RetInvInitData Invalid initialization data
RetInvCtlBlockPtr Invalid control block pointer (e.g., used for generic device driver

implementations)
RetInvState Operation not permitted in current state.
RetInvCmd Invalid command or command not implemented by this lower module.
RetInvVar Invalid variable or variable not implemented by this lower module.
RetInvSig Invalid signal or signal not implemented by this lower module.
RetInvDev Invalid “device” pointer (used for context by some implementations)
RetInvPtr Invalid pointer argument.
RetInvSize Invalid size argument.
RetInvQual Invalid qualifier.
RetInvParam General invalid parameter error.
RetInvGroupClass Invalid group class identifier.
RetInvGroupInstance Invalid group instance number.

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 15
http://www.rooftop.com

4 Core Packet API Definition
This section gives the logical definition of the Core Packet API. It too is divided according to the major
API components:
• Qualifiers
• Primitives
• Return Codes
Because the primitives, qualifiers, and return codes in the Core Packet API extend those defined in the
Core API, the Core Packet API is said to inherit, or be derived from, the Core API.
Also, to outline how packets are communicated across the Core Packet API, this section begins with a
discussion on Packet Handling.

4.1 Packet Handling
The following objectives guided the definition for the handling of data packets across Core Packet APIs:

• Simplify the job of the lower module to the extent possible.
• Avoid packet copy operations.
• Support the use of standard, serial-communications controllers within the “lower-module” that

use arrays of pointers to contiguous “frame buffers”.12

Core Packet APIs communicate user data in the form of packet buffers, identified by a start pointer and
a length. Though not a strict requirement, the lower module should generally be able to handle queues
of such packet buffers on both the transmit and receive sides. Each individual packet buffer
transmitted down across the source API should, if communicated properly, be passed up across the
recipient’s API as the same, undivided, individual packet (e.g., rather than merging packets together or
passing up a series of portions of packets).

For software-based implementations, all packet buffers are “owned” by the upper module (as are any
packet information or other structures used to pass information from the upper module to lower module).
Thus, the upper module is responsible for allocating, freeing, and informing the lower module of the
identities of packet buffers and packet information structures (see below) used for transmit and receive
operations. The “access rights” for these packet buffers are passed to the lower module with a
CmdXmtPkt or CmdRcvPkt operations. Asynchronous signals (described below) are then used to return
the access rights to the transmit and receive packet buffers and the accompanying packet information
structures back to the upper module. Also, the lower module must accept and store an individual protocol
buffer handle with each packet buffer, to be returned to the upper module when its associated packet buffer
is returned through a signal (e.g., upon completing a packet transmission or reception). The upper
module can use this protocol buffer handle to hold buffer-specific context information for each packet
buffer passed down to the lower module.

To allow the upper module to set transmit or receive characteristics to be used specifically for a particular
packet, and to permit the lower module to report packet-specific measurements for receptions, a packet
information structure should accompany each packet transmit and receive command (CmdPktXmt,
CmdPktRcv), and their corresponding signals (SigPktXmt, SigPktRcv). The packet information structure
should include fields for the following:13

12 Implementations for such controllers are available in IC’s, ASIC modules, and controllers on embedded
microprocessors such as Motorola’s 68360.
13 See the DevPktInfo structure in the Generic Device Driver implementation for an example.

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 16
http://www.rooftop.com

InfoPkt API Information Structure
Description: Used to manage buffers and transmit/receive characteristics for packet

transmissions and receptions.

Field Name Field Description Software Example
Handle Upper-module buffer handle Opaque software

pointer
Pkt buffer Packet buffer information Packet start pointer

and length
Address The address to use for the destination of

transmitted packets, and to report the source
of received packets (if supported by the lower
module),

Src/Dst MAC address

Error status Bit error and/or correction status Enumerated error
status

Timestamps The precise transmit time for transmitted
packets (reported by the lower module), and
the precise transmit time (stamped in the
packet by the transmitter) and receive time
(reported by the lower module) for received
packets.

Transmit timestamp
in {secs, usecs}, and
receive timestamp in
{secs, usecs}.

Modifiers A list of (variable, value) pairs to permit
packet-specific tuning of transmit
characteristics, or to report packet-specific
measurements on received packets

Array of variable
{name, value} pairs.

The following precedence is used by the lower module to determine the current settings for the transmit
or receive module characteristics:

Highest
precedence

Characteristics specified in a packet information structure for an active
packet transmission or reception attempt (according to the packet
information structure associated with the packet being transmitted, or
being filled with received data).

Lowest
precedence

Characteristics specified by the persistent state variables.

4.2 Core Packet API Qualifiers

For Core Packet APIs, the following qualifier is added to those defined for Core APIs:

xmt/rcv Indicates that the primitive should be supported for both the transmitter
and receiver sections individually, for lower modules that can support it.

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 17
http://www.rooftop.com

4.3 Core Packet API Primitives
The tables in this subsection list primitives that extend the Core API primitives for all APIs that
communicate information by data packets or buffers.

4.3.1 Commands
The following modifications or extensions are made to commands inherited from the Core API:

CmdReset Core API Command
Requirement: Mandatory

Qualifiers:
Data:

Description: Any receive or transmit packet buffers should be returned to
the upper module using the SigRcvPkt and SigXmtPkt signals
with the RetPktRcvFail or RetPktXmtFail return code. If
performed through a function call, the function should “block”
until the reset operation has completed. The lower module
should “play dead” until receiving its first CmdReset
command following power-up.

This Core Packet API introduces the following commands:

CmdXmtPkt Command
Requirement: Mandatory

Qualifiers:
Data: A packet buffer and its associated protocol buffer handle.

Description: Command to transmit a packet.

CmdRcvPkt Command
Requirement: Mandatory

Qualifiers:
Data: A packet buffer and its associated protocol buffer handle.

Description: Command to pass a buffer to the lower module to be used for
received packet data.

4.3.2 Variables
The following variables are introduced by this Core Packet API:

VarQPkts Variable
Requirement: Highly desirable

Qualifiers: get, xmt/rcv
Data: Returned number of packets.

Description: A read-only variable indicating the current number of
packets queued for transmission (default) or reception,
depending on the xmt/rcv direction in the qualifier.

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 18
http://www.rooftop.com

VarMacAdr Variable
Requirement: Highly Desirable

Qualifiers: get/set/clr
Data: The MAC address or MAC address/mask pair, and the MAC

address index (if VarMaxMacAdrs is greater than 1).
Description: This variable is used to specify the MAC address or MAC

address/mask pair(s) for this lower module, or set to the lower-
module-specific MAC broadcast address to receive all packets.

VarBitRate Variable
Requirement: Highly Desirable

Qualifiers: get/set, xmt/rcv
Data: bit rate

Description: Raw bit rate on the communication channel.

VarMaxPkts Variable
Requirement: Highly Desirable

Qualifiers: get, xmt/rcv
Data: Max number of receive or transmit packet buffers

Description: A read-only variable indicating the maximum number of
internal packet buffers that the lower module can handle for
either transmission (maximum number of unsent packets) or
reception (maximum number of empty receive packet
buffers) depending on the xmt/rcv qualifier.

VarTestMode Variable
Requirement: Highly Desirable

Qualifiers: get/set/clr
Data: Test mode.

Description: Used for debugging, this variable indicates the current test
mode of the lower module (such as a loopback mode). The
test mode must be “disabled” by default after power-up or
reset. The modes should be defined within the lower-
module-specific header file. For example, different modes
may cause a loopback test to occur at different stages within
the lower module.

VarMtu Variable
Requirement: Highly Desirable

Qualifiers: get
Data: Maximum Transmission Unit (packet buffer size) in bytes

Description: Returns the maximum size for transmit or receive packet
buffers in bytes. This number does not include any header
or tailer bytes added to the packet by the lower module (see
VarPktHeadLen and VarPktTailLen).

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 19
http://www.rooftop.com

VarPktHeadLen Variable
Requirement: Optional (if not supported, then assumed to be 0)

Qualifiers: get
Data: Number of bytes

Description: A read-only variable used to indicate the number of bytes
that the lower module requires to be available before the start
pointer of each packet buffer passed down to the lower
module in CmdPktXmt and CmdPktRcv commands. The
lower module may use this packet buffer space for adding
it’s own packet header to outgoing packets, or to receive and
process the packet headers from incoming packets. If this
variable is not supported, then the upper module will
assume that the lower module does not add its own header,
or that a buffer copy is done prior to adding its header for
outgoing packets (or after processing its header for incoming
packets).

VarPktTailLen Variable
Requirement: Optional (if not supported, then assumed to be 0)

Qualifiers: get
Data: Number of bytes

Description: A read-only variable used to indicate the number of bytes that
the lower module requires to be available after the (start
pointer + len) of each packet buffer passed down to the lower
module in CmdPktXmt and CmdPktRcv commands. The
lower module may use this packet buffer space for adding it’s
own packet tailer to outgoing packets, or to receive and
process the packet tailers from incoming packets. If this
variable is not supported, then the upper module will assume
that the lower module does not add its own tailer, or that a
buffer copy is done prior to adding its tailer for outgoing
packets (or after processing its tailer for incoming packets).

VarQBytes Variable
Requirement: Optional

Qualifiers: get, xmt
Data: Returned number of bytes.

Description: A read-only variable indicating the total number of bytes
queued for transmission.

VarMaxMacAdrs Variable
Requirement: Optional

Qualifiers: get
Data: Returns the max. number of rcv MAC addresses.

Description: If the lower module can receive packets for multiple MAC
address / mask combinations, this will return the max.
number. This can be useful for efficient multicast protocols.

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 20
http://www.rooftop.com

4.3.3 Signals
The following signals are introduced by this Core Packet API

SigRcvPkt Signal
Requirement: Mandatory

Qualifiers: isr
Data: Rcv’d pkt buffer and associated protocol buffer handle

Description: A signal generated when a packet has been received. The
protocol buffer handle is equal to that used in the
corresponding CmdRcvPkt command. This signal is also
used, with the RetPktRcvFail return code, to return a receive
packet buffer to the upper module before it has been filled in
with received packet data (due, for example, to a
CmdReset).

SigXmtPkt Signal
Requirement: Mandatory

Qualifiers: isr
Data: Xmt’d pkt buffer and associated protocol buffer handle

Description: A signal generated when a packet has completed
transmission. The protocol buffer handle is equal to that
used in the corresponding CmdXmtPkt command. This
signal is also used, with the RetPktXmtFail return code, to
return a transmit packet buffer to the upper module before
the data has been actually transmitted (due, for example, to
a CmdReset).

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 21
http://www.rooftop.com

4.3.4 Summary of Core Packet API Primitives
Table 2 summarizes the names, degree of requirement (M-Mandatory, H-Highly desirable, D-Desirable,
O-Optional), qualifiers, and data for each of the Core Packet API’s logical primitives (which are in
addition to those defined the Core API).

Table 2: Summary of Core Packet API Primitives
Commands Rqmt Qualifiers Data

CmdXmtPkt M Pkt buf & its protocol buf handle
CmdRcvPkt M Pkt buf & its protocol buf handle

Variables Rqmt Qualifiers Data

VarMacAdr H get/set, clr MAC address/mask for this packet module
VarQPkts H get, xmt/rcv No. of packets in queue
VarBitRate H get/set, xmt/rcv Raw channel bit rate
VarMaxPkts H get, xmt/rcv Max number of packet buffers
VarTestMode H get/set Test (e.g., loopback) mode
VarMtu H get Max. packet buffer size in bytes.
VarPktHeadLen O get Number of bytes
VarPktTailLen O get Number of bytes
VarQBytes O get, xmt/rcv Total no. of bytes in queue
VarMaxMacAdrs O get Max. no. of rcv MAC address/masks

Signals Rqmt Qualifiers Data

SigXmtPkt M isr Xmt’d pkt buf & its proto buf handle
SigRcvPkt M isr Rcv’d pkt buf & its proto buf handle

API Framework for Internet Radios 11 September 1998; v2.03

Rooftop Communications Corp. Page 22
http://www.rooftop.com

4.4 Core Packet API Return Codes

For Core Packet APIs, the following return codes are defined in addition to those in the Core API:
RetPktRcvFail Packet failed to be received, returning access rights of packet buffer and any

info structure. Packet buffer is returned before any reception has been
completed for this buffer.

RetPktXmtFail Packet failed to be transmitted, returning access rights to packet buffer and
any info structure. Packet buffer is returned before any transmission attempt
has completed.

RetPktXmtFailCarrier Packet failed to be transmitted due to sensed carrier, returning pkt buf (when
in a mode where receive carrier takes precedence over transmissions).

RetPktXmtFailOverflow Packet failed to be transmitted due to overflow of module xmt queue.

RetPktXmtFailUnderrun Packet failed to be transmitted due to underrun of module xmt queue (used
for modules which are put into persistent “transmit modes”).

RetPktRcvError Other error in received packet; typically passed to the upper module with
SigRcvPkt accompanying a received packet buffer with errors detected.

RetPktXmtError Other error in transmitted packet; typically passed to the upper module with
SigXmtPkt accompanying a transmitted packet buffer with some
transmission error detected.

5 Acknowledgments
The development of this API Framework was initially supported by the Small Business Innovation
Program (SBIR) through Rooftop’s Commercial Distributed Packet Radio project (contract no. DAAB07-
96-C-D010). It’s continuing evolution has been supported by the Defense Advanced Research Projects
Agency (DARPA) through the Global Mobile (GloMo) program’s Wireless Internet Gateways (WINGS)
project (contract no. DAAB07-95-C-D157), SRI International’s GloMo program, and the Adaptive Signal
Processing and Networking (ASPEN) program (contract no. F30602-97-C-0314). WINGS is a
collaborative effort by the University of California, Santa Cruz (the prime contractor) and Rooftop
Communications, and ASPEN is a collaborative effort by Raytheon Corp. (prime contractor) and
Rooftop. This document has also benefited from the constructive review and feedback of the “GloMo
Radio API Working Group.”

