

Copyright © 2021 The Software Defined Radio Forum Inc. – All Rights Reserved

International Tactical Radio Security

Services API Specification

Document WINNF-TS-0011

(formerly WINNF-09-S-0011)

 Version V1.0.0

11 February 2021

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc Page i

All Rights Reserved

TERMS, CONDITIONS & NOTICES

This document has been prepared by the International Radio Security Services API Task Group

to assist The Software Defined Radio Forum Inc. (or its successors or assigns, hereafter “the

Forum”). It may be amended or withdrawn at a later time and it is not binding on any member of

the Forum or of the International Radio Security Services API Task Group.

Contributors to this document that have submitted copyrighted materials (the Submission) to the

Forum for use in this document retain copyright ownership of their original work, while at the

same time granting the Forum a non-exclusive, irrevocable, worldwide, perpetual, royalty-free

license under the Submitter’s copyrights in the Submission to reproduce, distribute, publish,

display, perform, and create derivative works of the Submission based on that original work for

the purpose of developing this document under the Forum's own copyright.

Permission is granted to the Forum’s participants to copy any portion of this document for

legitimate purposes of the Forum. Copying for monetary gain or for other non-Forum related

purposes is prohibited.

THIS DOCUMENT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER,

AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY

DISCLAIMED. ANY USE OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT

THE IMPLEMENTER'S OWN RISK, AND NEITHER THE FORUM, NOR ANY OF ITS

MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY

IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE

WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS

DOCUMENT.

Recipients of this document are requested to submit, with their comments, notification of any

relevant patent claims or other intellectual property rights of which they may be aware that might

be infringed by any implementation of the specification set forth in this document, and to provide

supporting documentation.

The document was developed following the Forum's policy on restricted or controlled

information (Policy 009) to ensure that that the document can be shared openly with other

member organizations around the world. Additional Information on this policy can be found

here: http://www.wirelessinnovation.org/page/Policies_and_Procedures. Although this document

contains no restricted or controlled information, the specific implementation of concepts

contained herein may be controlled under the laws of the country of origin for that

implementation. Readers are encouraged, therefore, to consult with a cognizant authority prior to

any further development.

Wireless Innovation Forum ™ and SDR Forum ™ are trademarks of the Software Defined Radio

Forum Inc.

http://www.wirelessinnovation.org/page/Policies_and_Procedures

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc Page ii

All Rights Reserved

Table of Contents

TERMS, CONDITIONS & NOTICES .. i
1 Introduction ...1

1.1 Overview ..1
1.2 Service Group Descriptions ...2

1.2.1 Concepts and usage overview ..2

1.2.2 Platform implementation of interfaces and operations ..2
1.2.3 IRSS API Port Definitions / Connections ..3

1.3 Modes of Service ...7
1.4 Service States ...7
1.5 Referenced Documents ..7

2 Services ...7
2.1 Provide Services...7

2.2 Use Services ...8

2.3 Interface Modules ..9
2.3.1 IRSS::Control ...9
2.3.2 IRSS::Infosec ...12

2.3.3 IRSS::Bypass ...15

2.3.4 IRSS::IandA ...16
2.3.5 IRSS::Protocol ...19

2.4 Sequence Diagrams ..20

2.4.1 Two Security Domain Cryptographic Channel..20
2.4.2 Single Security Domain Cryptographic Channel ...22

2.4.3 Stream Multi Channels ..24
2.4.4 TRANSEC - Encrypt/Decrypt ...26
2.4.5 TRANSEC – Keystream ..27

2.4.6 Bypass Channels ..29
2.4.7 Hash Channels ...31

2.4.8 Protocol ..31

3 Service Primitives and Attributes ...33
3.1 IRSS::Bypass::Channel ..33

3.1.1 PushBypass Operation ...33

3.1.2 GetMaxBypassSize Operation ...33
3.2 IRSS::Bypass::Consumer ...34

3.2.1 PushBypass Operation ...34
3.3 IRSS::Control::CertificateMgmt ..35

3.3.1 RetrieveCertificate Operation ..35

3.3.2 GetCertficateIds Operation ..35
3.3.3 IsCertficateValid Operation ...36

3.4 IRSS::Control::ChannelMgmt ...37
3.4.1 CreateCryptographicChannel Operation ..37
3.4.2 CreateTransecChannel Operation ..38
3.4.3 CreateBypassChannel Operation ...39
3.4.4 CreateHashChannel Operation ...40

3.4.5 CreateMacChannel Operation ..41

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc Page iii

All Rights Reserved

3.4.6 CreateSignatureChannel Operation ...42
3.4.7 CreateSignatureVerificationChannel Operation ..43
3.4.8 CreateProtocolChannel Operation ...44
3.4.9 DestroyChannel Operation...45

3.4.10 AddCryptographicConfiguration Operation ..46
3.4.11 AddTransecConfiguration Operation...46
3.4.12 RemoveConfiguration Operation ...47
3.4.13 ActiviateConfiguration Operation ...48
3.4.14 DeactivateConfiguration Operation ...49

3.5 IRSS::Control::KeyMgmt ..49
3.5.1 UpdateKey Operation ..49
3.5.2 UpdateKeyWithAlgorithm Operation ..50

3.5.3 GetUpdateCount Operation ...51
3.5.4 ZeroizeKey Operation ..51

3.6 IRSS::IandA::Channel ...52
3.6.1 PushData Operation ...52

3.6.2 GetMaxDataSize Operation ...52
3.6.3 Reset Operation ..53

3.7 IRSS::IandA::HashChannel ...54
3.7.1 GetHash Operation...54

3.8 IRSS::IandA::MacChannel ..54
3.8.1 GetMac Operation ..54

3.8.2 IsMacValid Operation ..55
3.9 IRSS::IandA::SignatureChannel ..56

3.9.1 GetSignature Operation ...56

3.10 IRSS::IandA::SignatureVerificationChannel ...57
3.10.1 IsSignatureValid Operation ...57

3.11 IRSS::IandA::Random ...57
3.11.1 GetPseudoRandomOperation ...57
3.11.2 GetRandom Operation ...58

3.12 IRSS::Infosec::CryptographicChannel ..59
3.12.1 TransformStream Operation ..59

3.12.2 TransformPackets Operation ...60
3.12.3 GetMaxPayloadSize Operation ..61
3.12.4 GetMaxPacketSize Operation ..62

3.12.5 SpaceAvailable Operation ...63
3.13 IRSS::Infosec::CryptographicConsumer ...63

3.13.1 PushStream Operation ...64
3.13.2 PushPackets Operation...65

3.14 IRSS::Infosec::ControlSignals ...65

3.14.1 FlowResume Operation ...65

3.15 IRSS::Infosec::TransecChannel ...66

3.15.1 EncryptTransec Operation ...66
3.15.2 DecryptTransec Operation ...67
3.15.3 GenerateKeyStream Operation ..68
3.15.4 GetMaxPayloadSize Operation ..69

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc Page iv

All Rights Reserved

3.16 IRSS::Protocol::Channel ..70
3.16.1 PushMessage Operation ...70

3.17 IRSS::Protocol::Consumer ...71
3.17.1 PushMessage Operation ...71

4 IDL ..72
4.1 Irss.idl...72
4.2 Bypass.idl ...72
4.3 Control.idl ..74
4.4 IandA.idl ..78

4.5 Infosec.idl...80
4.6 Protocol.idl ...82

5 UML ..84

5.1 Data Types ...84
5.1.1 IRSS::ChannelId ..84
5.1.2 IRSS::Control::ConfigurationId ...84
5.1.3 IRSS::Control::CryptoApplicationId ...84

5.1.4 IRSS::Control::KeyId ..84
5.1.5 IRSS::Control::KeyUpdateAlgorithmId ..84

5.1.6 IRSS::Control::EndpointId ..84
5.1.7 IRSS::Control::CryptoModulelId ..84

5.1.8 IRSS::Control::CertificateId ..85
5.1.9 IRSS::Control::HashAlgorithmId ..85

5.1.10 IRSS::Control::MacAlgorithmId ...85
5.1.11 IRSS::Control::SignatureAlgorithmId ...85
5.1.12 IRSS::Control::CryptoApplicationIdSequence ..85

5.1.13 IRSS::Control::CertificateIdSequence ...85
5.1.14 IRSS::Infosec::PacketSequence ...85

5.2 Enumerations ...86
5.2.1 IRSS::Control::EndpointId ..86
5.2.2 IRSS::Control::Duplexity ..86

5.3 Exceptions ..86
5.3.1 IRSS::InvalidChannelId ...86

5.3.2 IRSS:ConfigurationInactive ...86
5.3.3 IRSS::Bypass::MaxBypassSizeExceeded ..86
5.3.4 IRSS::Bypass::PolicyViolation ..87

5.3.5 IRSS::Control::InvalidCertificateId ...87
5.3.6 IRSS::Control::ChannelCreationError ...87
5.3.7 IRSS::Control::ConfigurationActivationError ...87
5.3.8 IRSS::Control::InvalidAlgorithmId ...87
5.3.9 IRSS::Control::InvalidConfiguration ...87

5.3.10 IRSS::Control::InvalidConfigurationId ...88

5.3.11 IRSS::Control::InvalidCryptoApplicationId ..88

5.3.12 IRSS::Control::InvalidEndpointId ...88
5.3.13 IRSS::Control::InvalidEndpointPair ..88
5.3.14 IRSS::Control::InvalidKey ..88
5.3.15 IRSS::Control::InvalidKeyUpdateAlgorithmId ...89

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc Page v

All Rights Reserved

5.3.16 IRSS::Control::InvalidModuleId ...89
5.3.17 IRSS::Control::KeyUpdateError ..89
5.3.18 IRSS::Control::UnrecognizedCertificate ...89
5.3.19 IRSS::IandA::InvalidMac ..89

5.3.20 IRSS::IandA::InvalidSignature ..90
5.3.21 IRSS::IandA::InvalidState ...90
5.3.22 IRSS::IandA::MaxDataSizeExceeded ...90
5.3.23 IRSS::Infosec::MaxPayloadSizeExceeded ..90
5.3.24 IRSS::Infosec::MaxPacketSizeExceeded ..90

5.3.25 IRSS::Infosec::BadSomFlag ..90
5.3.26 IRSS::Infosec::BadTransecSeed ..91
5.3.27 IRSS::Protocol::InvalidMessage ..91

5.3.28 IRSS::Protocol::MaxMessageSizeExceeded ...91
5.3.29 IRSS::Protocol::UnrecognizedMessage ...91

5.4 Structures ...92
5.4.1 IRSS::Control::CryptographicConfiguration ...92

5.4.2 IRSS::Control::TransecConfiguration ...92
5.4.3 IRSS::Infosec::Packet ..93

5.5 Unions ..93
Appendix A ACRONYMS ...94

List of Figures
Figure 1: Channel lifecycle ... 2

Figure 2 - IRSS Port Diagram - Single Security Domain ... 4
Figure 3 - IRSS Port Diagram - Two Security Domains .. 5

Figure 4 - Control::CertificateMgmt Interface ... 9
Figure 5 – IRSS::Control::ChannelMgmt ... 11
Figure 6 - Control::KeyMgmt Interface .. 12

Figure 7 - IRSS::Infosec::CryptographicChannel Interface ... 13
Figure 8 - IRSS::Infosec::CryptographicConsumer Interface .. 14

Figure 9 IRSS::Infosec::ControlSignals Interface .. 14
Figure 10 - IRSS::Infosec::TransecChannel Interface .. 15
Figure 11 – IRSS::Bypass::Channel and IRSS::Bypass::Consumer Interfaces 16
Figure 12 - IRSS::IandA::Channel Interfaces ... 18

Figure 13 - IRSS::IandA::Random Interface .. 19
Figure 14 - IRSS::Protocol::Channel Interface ... 20
Figure 15 - IRSS::Protocol::Consumer Interface .. 20
Figure 16 - Two Security Domain Cryptographic Channel Sequence Diagram 21
Figure 17 - Single Security Domain Cryptographic Channel Sequence Diagram 23

Figure 18 - Stream Multi Channels Sequence Diagram ... 25

Figure 19 - TRANSEC - Encrypt/Decrypt Sequence Diagram .. 27

Figure 20 - TRANSEC - Keystream Sequence Diagram .. 28
Figure 21 - Bypass Channels Sequence Diagram ... 30
Figure 22 - HashChannel Sequence Diagram ... 31
Figure 23 - Protocol Sequence Diagram ... 32

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc Page vi

All Rights Reserved

List of Tables
Table 1 - IRSS API Uses Service Interface .. 7

Table 2 - IRSS API Uses Service Interface .. 8

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 1

All Rights Reserved

International Tactical Radio Security Services API

Specification

1 Introduction

The International Tactical Radio Security Services (IRSS) API standardizes a software security

interface for use by the international tactical radio community. In particular, this API is targeted

for deployment in tactical radio systems based on the Software Communication Architecture

(SCA), though that is not necessarily a prerequisite for its use. In its current increment, the intent

of this API is to promote waveform (WF) portability between various radio platforms that

provide the API. As such, the focus of this API is on the security interfaces required to meet

waveform needs. Although working systems require additional platform security interfaces to

fulfill a number of needs, such as keyfill, security policies, etcetera, standardizing such interfaces

does not add to waveform portability. Additionally, it is at the platform level where the variation

is expected to be the highest across the international community, making such standardization

difficult. As such, platform security interfaces will only be detailed where there is overlap with

waveform security interfaces.

The IRSS API consists of several API service groups, as follows:

• The control service group details interfaces used to establish, configure, and otherwise

manage channels for services provided by this API.

• The Infosec service group details interfaces for usage of cryptographic channels and

TRANSEC channels. Cryptographic channels are used for transformation (i.e.

encryption/decryption) of user information between security domains or within a single

security domain. TRANSEC channels are typically used to protect the protocol used for

transmissions (compared with the traffic payload itself).

• The bypass service group details interfaces for usage of bypass channels used to transfer

waveform control information between security domains without encryption.

• The integrity and authentication service group details interfaces for features such as

generating hashes, generating message authentication codes (MACs), generating and

verifying digital signatures, and generating random numbers.

• The protocol service group details interfaces that allow waveforms to interact with

Cryptographic Applications (CAs), using a generic protocol to perform CA-specific

functions. This allows specialized protocols or functions not addressed by the other IRSS

APIs to be performed, such as asymmetric key negotiation, etc.

1.1 Overview

The contents of the document are laid out as follows:

• Section 1, Introduction, contains the introductory material regarding the overview,

service layer description, modes, states and referenced documents of this document.

• Section 2, Services, specifies the interfaces for the component, port connections, and

sequence diagrams.

• Section 3,

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 2

All Rights Reserved

Service Primitives and Attributes, specifies the operations that are provided by the IRSS

API.

• Section 4,

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 3

All Rights Reserved

IDL details the IDL for the IRSS API.

• Section 5,

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 4

All Rights Reserved

UML, depicts the component UML and details the data types used within the IRSS API.

1.2 Service Group Descriptions

1.2.1 Concepts and usage overview

While the IRSS API standardizes a number of interfaces for performing security functions on a

radio set, by necessity the underlying algorithms and their specific configuration are intentionally

generic. To bind this generic API to specific behaviors, the concept of cryptographic

applications (CAs) is used. A CA provides a unique set of services that are specific for a

particular cryptographic protocol or cryptographic algorithm. For example, an “AES CFB” CA

is an example of a generic AES engine that streaming waveforms could utilize, while an

“IPSEC” CA is an example of a complex CA that internally supports multiple algorithms with

per-packet dynamic selection. How CAs become resident in a Cryptographic SubSystem (CSS)

is implementation specific – some CSSs will be prebuilt with all CAs they support, while others

may support the concept of installable CAs. Regardless of the means, a waveform references a

CA by using a platform-specific ID.

Most IRSS services are employed using a multistep process as follows:

Channel Creation

Add channel configurations

Configuration activation

Channel Usage

Channel Destruction

Applies to all channel types

CryptographicChannel and

TransecChannel types only

CryptographicChannel and

TransecChannel types only

Applies to all channel types

Applies to all channel types

Process Applicability

Allocates CSS resources,

specifies algorithm(s), other

specifics

Specifies key and algorithm

(from channel list)

Selects a specific configuration

to use (destroys current channel

context if channel in use)

Actual channel use

Deallocates CSS resources

Usage

Figure 1: Channel lifecycle

1.2.2 Platform implementation of interfaces and operations

This standard defines a number of normative interfaces for waveform use to perform security

functions relevant to the waveform. However, across the broad software-radio domain, there is

no universal agreement or standardization on which specific functions should be performed by

waveforms, platforms or possibly both. In the process of forming this standard, a variety of use-

cases were examined, with the union of individual waveform needs considered in determining

which operations and functions to include.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 5

All Rights Reserved

At the same time, the security requirements of individual Software Defined Radio (SDR)

platforms may vary, and in the general case, it may be inappropriate for all operations to be

available to the waveform. In such a case, several avenues are available to implementers

realizing the interfaces in this specification:

• Do not implement or connect a specific interface: for example, some platforms do not

allow a waveform to create or manage cryptographic channels – only use them. In this

case, an implementer could choose to not implement the interface at all, or not connect

the interface to a waveform port. In this case, presumably the platform would make the

equivalent capability available to the platform instead, as channels still need to be created

and managed, with the platform passing the channelIds to the waveform for use.

• Dissallow one or more operations within an API: In this case, the platform would

either not implement one or more of the operations in an API, or, based on some platform

policy (possibly waveform specific) disallow execution of the operation. In both cases an

appropriate exception would be returned.

High assurance platforms typically implement a variety of policies that govern operation of the

CSS and waveform’s use of security services. As these policies tend to be very domain and

country specific, this standard does not address them, even in a generic fashion. The

implementation of any such policies is assumed to be a radio platform function and not needed

by waveforms themselves.

1.2.3 IRSS API Port Definitions / Connections

Being a broad-spectrum standard, the IRSS API specifies a set of interfaces and their semantics

without standardizing how these interfaces are allocated to components on a given radio set, nor

how these components are distributed across security domains (SDs). SDs provide

compartmentalization of information across cryptographic boundaries, with these boundaries

being separated by a CSS.

In this section, several typical IRSS component port layouts are shown (single and double

security domains), but many other configurations and topologies are possible, with dimensions

spreading across multiple radio channels and multiple SDs. Each radio set implementing these

APIs is expected to detail its specific port layout as part of its design documentation.

Figure 2 shows the port connections for an IRSS component in a single security domain. In this

case, both plaintext (non-encrypted) and ciphertext (encrypted) information are presented

through a common IRSS component. As a result, ports using the bypass module interfaces are

not included as there is “nothing to bypass around”. Contrast this to the double sided case,

where the only way to send control data across the CSS is to use a bypass interface.

In the diagrams below and in this standard in general, port names are provided for reference

only, and not normative.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 6

All Rights Reserved

IRSS::Infosec::CryptographicConsumer

encrypt_uses_port

IRSS::Infosec::CryptographicChannel

encrypt_provides_port

IRSS::Control::CertificateMgmt

certificate_mgmt_provides_port

IRSS::Infosec::ControlSignals

decrypt_flow_control_uses_port

IRSS

WF Clients

IRSS

Management

Service

IRSS::Infosec::ControlSignals

encrypt_flow_control_uses_port

IRSS::Infosec::CryptographicChannel

decrypt_provides_port

IRSS::Infosec::CryptographicConsumer

decrypt_uses_port

IRSS::Control::KeyMgmt

key_mgmt_provides_port

IRSS::Infosec::TransecChannel

transec_provides_port

IRSS::IandA::HashChannel

hash_provides_port

IRSS::IandA::MacChannel

mac_provides_port

IRSS::IandA::SignatureChannel

signature_provides_port

IRSS::IandA::SignatureVerificationChannel

signature_verification_provides_port

IRSS::IandA::Random

random_provides_port

IRSS::Control::ChannelMgmt

channel_mgmt_provides_port

IRSS::Protocol::Channel

protocol_provides_port

IRSS::Protocol::Consumer

protocol_uses_port

Example::Interface

example_port

SCA "uses" port
SCA "provides" port

CORBA interface class provided

port name
non-port interface

Key:

Figure 2 - IRSS Port Diagram - Single Security Domain

Figure 3 shows the port connections for an IRSS component in a typical high-assurance, dual

security domain platform that realizes the IRSS API. In this case, the CSS formally separates

plaintext (non-encrypted) information from ciphertext (encrypted) information. The waveform

interfaces to this CSS are through two distinct components, each which implement some parts of

the IRSS APIs. Note that in this example below, the ChannelManagement interface is presented

to the plaintext side only. While this is typical, it is not normative, and other implementations

could place this on the ciphertext side. Note that when compared with the single-sided

arrangement in Figure 2, it becomes necessary to bypass control messages between plaintext and

ciphertext sides. To support this, the Bypass interface is employed.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 7

All Rights Reserved

IRSS::Infosec::CryptographicChannel

decrypt_provides_port

IRSS::Infosec::CryptographicConsumer

encrypt_uses_port

IRSS::Infosec::ControlSignals

decrypt_flow_control_uses_port

IRSS::Infosec::CryptographicChannel

encrypt_provides_port

IRSS

Management

Service

IRSS

PT WF

Clients

IRSS
CT WF

Clients

Cryptographic

Subsystem

IRSS::Control::KeyMgmt

key_mgmt_provides_port

IRSS::Infosec::CryptographicConsumer

decrypt_uses_port

IRSS::Infosec::ControlSignals

encrypt_flow_control_uses_port

IRSS::Control::ChannelMgmt

channel_mgmt_provides_port

IRSS::Control::CertificateMgmt

certificate_mgmt_provides_port

IRSS::IandA::HashChannel

hash_provides_port

IRSS::IandA::MacChannel

mac_provides_port

IRSS::IandA::SignatureChannel

signature_provides_port

IRSS::IandA::SignatureVerificationChannel

signature_verification_provides_port

IRSS::Bypass::Channel

pt_bypass_provides_port

IRSS::Bypass::Consumer

pt_bypass_uses_port

IRSS::Bypass::Channel

ct_bypass_provides_port

IRSS::Bypass::Consumer

ct_bypass_uses_port

IRSS::IandA::Random

pt_random_provides_port

IRSS::Protocol::Consumer

pt_protocol_uses_port

IRSS::Protocol::Channel

pt_protocol_provides_port

IRSS::Protocol::Channel

ct_protocol_provides_port

IRSS::Protocol::Consumer

ct_protocol_uses_port

IRSS::Infosec::TransecChannel

transec_provides_port

IRSS::IandA::Random

ct_random_provides_port

Example::Interface

example_port

SCA "uses" port
SCA "provides" port

CORBA interface class provided

port name
non-port interface

Key:

Figure 3 - IRSS Port Diagram - Two Security Domains

IRSS API Provides Port Definitions

channel_mgmt_provides_port is provided by the IRSS to allow a waveform or OE

component to create, configure, and manage channels.

key_mgmt_provides_port is provided by the IRSS to allow a waveform or OE

component to request key management operations.

certificate_mgmt_provides_port is provided by the IRSS to allow a waveform or OE

component to retrieve and validate certificates.

encrypt_provides_port is provided by the IRSS to allow a waveform to request that a

packet of data be encrypted by using the transform methods. Other methods allow the

client to query the maximum packet and maximum payload sizes supported by the

interface. The return values from the transform operations and the SpaceAvailable()

method provide for flow control.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 8

All Rights Reserved

decrypt_provides_port is provided by the IRSS to allow a waveform to request that a

packet of data be decrypted by using the transform methods. Other methods allow the

client to query the maximum packet and maximum payload sizes supported by the

interface. The return values from the transform operations and the SpaceAvailable()

method provide for flow control.

transec_provides_port is provided by the IRSS to allow a client to encrypt or decrypt a

TRANSEC payload. It also allows a client to generate keystream.

pt_bypass_provides_port and ct_bypass_provides_port are provided by the IRSS to

allow a client to push a bypass message through the crypto module.

hash_provides_port is provided by the IRSS to allow a client to request the generation of

a hash and have the hash returned.

mac_provides_port is provided by the IRSS to allow a client to request the computation

of a MAC and have the MAC returned. It also allows a client to verify a MAC.

signature_provides_port is provided by the IRSS to allow a client to request the

generation of a digital signature and have the signature returned.

signature_verification_provides_port is provided by the IRSS to allow a client to

request the verification of a digital signature.

random_provides_port, pt_random_provides_port, and ct_random_provides_port

are provided by the IRSS to allow a client to request the generation of true random

numbers or pseudo random numbers.

protocol_provides_port, pt_protocol_provides_port, and ct_protocol_provides_port

are provided by the IRSS to allow a client to push protocol messages to the IRSS.

IRSS API Uses Port Definitions

encrypt_uses_port is used by the IRSS to push data to a client after an encryption

operation successfully completes. This port does not provide for any flow control.

encrypt_flow_control_uses_port is used by the IRSS to inform the client that the

previously paused encryption flow may resume.

decrypt_uses_port is used by the IRSS to push data to a client after a decryption

operation successfully completes. This port does not provide for any flow control.

decrypt_flow_control_uses_port is used by the IRSS to inform the client that the

previously paused decryption flow may resume.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 9

All Rights Reserved

protocol_uses_port, pt_protocol_uses_port, and ct_protocol_uses_port are used by

the IRSS to push protocol messages to a client.

pt_bypass_uses_port and ct_bypass_uses_port are used by the IRSS to push

information that was bypassed through the crypto module to a client.

1.3 Modes of Service

Not applicable.

1.4 Service States

Not applicable.

1.5 Referenced Documents

[1] JTRS Standard, “Software Communications Architecture (SCA),” JPEO, Version 2.2.2.

[2] RFC 3280, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile”, IETF, http://www.ietf.org/rfc/rfc3280.txt

2 Services

2.1 Provide Services

Table 1 - IRSS API Uses Service Interface

Service

Group
Port Name

Service

(Interface Used)

Primitives

(Used)

Bypass
ct_bypass_provides_port,

pt_bypass_provides_port

IRSS::Bypass::Channel PushBypass()

GetMaxBypassSize()

Control

channel_mgmt_provides_

port

IRSS::Control::Channel

Mgmt

CreateCryptographicChannel()

CreateTransecChannel()

CreateBypassChannel()

CreateHashChannel()

CreateMacChannel()

CreateSignatureChannel()

CreateSignatureVerificationChannel()

CreateProtocolChanel()

DestroyChannel()

AddCryptographicConfiguration()

AddTransecConfiguration()

RemoveConfiguration()

ActivateConfiguration()

DeactivateConfiguration()

key_mgmt_provides_port IRSS::Control::KeyMg

mt

UpdateKey()

UpdateKeyWithAlgorithm()

GetUpdateCount()

ZeroizeKey()

http://www.ietf.org/rfc/rfc3280.txt

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 10

All Rights Reserved

Service

Group
Port Name

Service

(Interface Used)

Primitives

(Used)
certificate_mgmt_provides

_port

IRSS::Control::Certific

ateMgmt

RetrieveCertificate()

GetCertificateIds()

IsCertificateValid()

Infosec

encrypt_provides_port,

decrypt_provides_port

IRSS:Infosec::Cryptogr

aphicChannel

TransformPackets()

TransformStream()

GetMaxPayloadSize()

GetMaxPacketSize()

SpaceAvailable()

transec_provides_port IRSS::Infosec::Transec

Channel

EncryptTransec()

DecryptTransec()

GenerateKeyStream()

GetMaxPayloadSize()

IandA

hash_provides_port IRSS::IandA::HashCha

nnel

GetMaxDataSize()

Reset()

GetHash()

PushData()

mac_provides_port IRSS::IandA::MacChan

nel

GetMaxDataSize()

Reset()

GetMac()

IsMacValid()

PushData()

signature_provides_port IRSS::IandA::Signature

Channel

GetMaxDataSize()

Reset()

GetSignature()

PushData()

signature_verification_pro

vides_port

IRSS::IandA::Signature

VerificationChannel

GetMaxDataSize()

Reset()

IsSignatureValid()

PushData()

random_provides_port,

ct_random_provides_port,

pt_random_provides_port

IRSS::IandA::Random GetPseudoRandom()

GetRandom()

Protocol protocol_provides_port,

ct_protocol_provides_port,

pt_protocol_provides_port

IRSS::Protocol::Chann

el

PushMessage()

2.2 Use Services

Table 2 - IRSS API Uses Service Interface

Service

Group
Port Name

Service

(Interface Used)

Primitives

(Used)

Bypass ct_bypass_uses_port,

pt_bypass_uses_port

IRSS::Bypass::Consumer PushBypass()

Infosec encrypt_flow_control_uses_port,

decrypt_flow_control_uses_port

IRSS::Infosec::ControlSignals FlowResume()

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 11

All Rights Reserved

Service

Group
Port Name

Service

(Interface Used)

Primitives

(Used)
encrypt_uses_port,

decrypt_uses_port

IRSS::Infosec::CryptographicConsumer Pushstream()

PushPackets()

Protocol protocol_uses_port,

ct_protocol_uses_port,

pt_protocol_uses_port

IRSS::Protocol::Consumer PushMessage()

2.3 Interface Modules

2.3.1 IRSS::Control

2.3.1.1 IRSS::Control::CertificateMgmt Interface Description

The IRSS::Control::CertificateMgmt interface provides the means for waveforms to access

certificates that are currently being managed by the IRSS, and to validate new certificates. A

client can use GetCertificateIds() to retrieve the IDs for the certificates that have been loaded

into, and are managed by, the IRSS. With these IDs the RetrieveCertificate() operation returns

the public portion of the certificate (i.e. it does not include the private key). Waveform clients

will also need to validate received certificates. Assuming the necessary trust anchors have been

previously loaded onto the platform, a client can use ValidateCertificate() to pass in and validate

a certificate received from a peer.

The IRSS::Control::CertificateMgmt interface is shown in Figure 4.

Figure 4 - Control::CertificateMgmt Interface

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 12

All Rights Reserved

2.3.1.2 IRSS::Control::ChannelMgmt Interface Description

Many operations offered by the IRSS API are performed on channels which define a

communication path between a waveform client and the CSS. Waveform clients use the

IRSS::Control::ChannelMgmt interface to create and manage channels. There are various types

of channels that clients can create:

• Cryptographic channels are used to transform (i.e. encrypt and decrypt) data

• Transec channels are used to cover protocol or other transmission information

• Bypass channels are used to bypass control information through the CSS

• Hash channels are used to generate a hash over data

• MAC channels are used to generate and verify a MAC over data,

• Signature channels are used to generate a signature over data

• Signature verification channels are used to verify a signature

• Protocol channels are used to send and receive protocol messages to/from the cryptographic

subsystem (for example, as part of a key exchange protocol).

Channels are created on a specific crypto module1 using specific endpoints that define the inputs

and, where applicable, the outputs of the channel. The definition for an endpoint is

implementation defined. For example, one could choose to use endpoints for each HW interface.

Alternatively, one could choose to use endpoints for each API instance. When a waveform is

ported between platforms, the values supplied to these parameters will in general need to be

changed.

In many platforms, channel creation will allocate specific CSS resources for use, with

subsequent deallocation of these resources on channel destruction. To be able to determine

which resources are needed, specific channel types use the information supplied with the

createXXX() operation – for example, for cryptographic channels, a list of all required

cryptographic applications and duplexity is required. This pre-allocation guarantees that (in non-

exceptional cases) once channel operation succeeds, all operations on the channel can be

performed.

With the exception of Cryptographic channels and TRANSEC channels, channels are ready to

use once created. Cryptographic channels and TRANSEC channels additionally need to be

configured (via AddCryptographicConfiguration() or AddTransecConfiguration()) and activated

(via ActivateConfiguration()) before they are ready to use. These operations allow fast

switching of configurations within the lifecycle of a channel without risk of an allocation failure.

When created, cryptographic channels and TRANSEC channels establish a context which is

shared between all the configurations on that channel. Switching between configurations on

these channels (via ActivateConfiguration()) will destroy any previous state maintained for the

channel and establish a new state for the new configuration. Multiple cryptographic/TRANSEC

channels can be created between the same set of endpoints with each channel establishing its

1 The concept of a crypto module, which typically refers to hardware function supporting cryptographic functions, is

not standardized, and is considered platform-dependent. Some systems will have only one module, while others

may have multiples.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 13

All Rights Reserved

own context2. Switching between channels will not destroy the state of the previous channel,

allowing that state to be used further.

The lifecycle of channels are summarized in Figure 1, and the UML for the

IRSS::Control::ChannelMgmt interface is shown in Figure 5.

Figure 5 – IRSS::Control::ChannelMgmt3

2.3.1.3 IRSS::Control::KeyMgmt Interface Description

Waveform clients use the IRSS::Control::KeyMgmt interface to perform certain key

management operations4. These operations include updating keys, getting their update counts,

and zeroizing keys. The operation UpdateKey() uses a update algorithm implied by the specific

2 Waveforms can create as many Cryptographic or TRANSEC channels as needed provided the CSS has sufficient

cryptographic resources to allocate to each channel.
3 In Figure 5, function signatures have been elided for brevity. Refer to section 3.4 for details.
4 Additional key management operations, including the ability to load, store and tag keys are provided by platform

interfaces not specified in this standard.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 14

All Rights Reserved

key, while UpdateKeyWithAlgorithm() is used in specific cases where multiple algorithms

could be used to update a given key.

Waveforms can zeroize specific keys using the ZeroizeKey() operation.

The IRSS::Control::KeyMgmt interface is shown in Figure 6.

Figure 6 - Control::KeyMgmt Interface

2.3.2 IRSS::Infosec

2.3.2.1 IRSS::Infosec::CryptographicChannel Interface Description

IRSS::Infosec::CryptographicChannel provides an interface which clients use to submit data for

encryption or decryption. The data itself consists of two sequences of octets, one containing the

information to be transformed and an optional second sequence containing inline bypass

information. The interface supports both stream traffic (using the TransformStream() operation)

or network packet traffic (using TransformPacket() operation).

For each of these operations, there is a corresponding option to determine the maximum data

length that may be submitted in a single call to the TransformStream() or TransformPacket()

operations. For stream traffic, GetMaxPacketSize() returns the largest stream packet (i.e. the

sum of the payload and bypass octet sequences) in octets that the IRSS can accept in a single

TransformStream() call. For packet traffic, TransformPacket() allows multiple packets in a

single call. Each individual packet (i.e. the sum of the payload and bypass octet sequences) must

be less than or equal to GetMaxPacketSize() octets, while the sum of all packets in a single call

shall be less than or equal to GetMaxPayloadSize().

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 15

All Rights Reserved

The Transform operations and the SpaceAvailable() operation return a bool indicating if space is

available for another transform request. True indicates that space is available for another

transform request and false indicates that space is not available (i.e. flow pause). Once flow

paused, the client should not push another packet until it receives a flow resume event through

the IRSS::Infosec::ControlSignals interface or SpaceAvailable() returns True when queried.

The IRSS::Infosec::CryptographicChannel interface is shown in Figure 7.

Figure 7 - IRSS::Infosec::CryptographicChannel Interface

2.3.2.2 IRSS::Infosec::CryptographicConsumer Interface Description

IRSS waveform clients implement the IRSS::Infosec::CryptographicConsumer interface to

receive data encrypted / decrypted via the TransformStream() or TransformPacket() operations

(presumably, but not necessarily in a different security domain). Flow control is not employed in

the interface to the client, which is expected to be able to handle the received traffic, including

any cryptographic preambles / postambles, etc. Any buffering needed as part of an overall

system flow control protocol must be implemented within the client.

The IRSS::Infosec::CryptographicConsumer interface is shown in Figure 8.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 16

All Rights Reserved

Figure 8 - IRSS::Infosec::CryptographicConsumer Interface

2.3.2.3 IRSS::Infosec::ControlSignals Interface Description

Flow control may be employed in the interface to the IRSS. A client can be flow paused after

pushing a packet to the IRSS::Infosec::CryptographicChannel if that packet fills the queues

managed by the IRSS. The IRSS::Infosec::ControlSignals interface is the mechanism that the

IRSS uses to notify a client that flow can once again resume.

The IRSS::Infosec::ControlSignals interface is shown in Figure 9.

Figure 9 IRSS::Infosec::ControlSignals Interface

2.3.2.4 IRSS::Infosec::TransecChannel Interface Description

TRANSEC channels provide for TRANSEC encryption/decryption as well as keystream

generation. The TRANSEC related operations must be seeded before use, via a seed parameter.

On the first call to a TransecChannel operation, the seed (whose format is algorithm specific and

not specified in this standard) shall be provided. This seed is used to initialize the appropriate

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 17

All Rights Reserved

algorithm. On subsequent calls, if the provided seed length is 0, then the algorithm continues

without reseeding. If the length is non-zero, than reseeding occurs. Clients pass seeds to the

IRSS as CF::OctetSequences. However, a seed is not necessarily an integer multiple of 8 bits.

Therefore, the number of seed bits must be passed to the IRSS as a separate parameter.

The IRSS::Infosec::TransecChannel interface is shown in Figure 10.

Figure 10 - IRSS::Infosec::TransecChannel Interface

2.3.3 IRSS::Bypass

The IRSS::Bypass::Channel and IRSS::Bypass::Consumer interfaces are shown in Figure 11.

The combination of the two are used to move non-traffic data between security domains without

encryption or other transformation, with the typical use in a system being to pass inter-

component waveform control flows across the CSS divide.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 18

All Rights Reserved

Figure 11 – IRSS::Bypass::Channel and IRSS::Bypass::Consumer Interfaces

2.3.3.1 IRSS::Bypass::Channel Interface Description

The IRSS provides the IRSS::Bypass::Channel interface. Waveforms use the interface to push

bypass messages through the crypto module. Bypass traffic is expected to be low rate, and

therefore, flow control is not built into the interface. However, there still exists a maximum

bypass size allowed for any given bypass message, with an accessor being provided by the API

for waveform clients to query the maximum bypass size. This maximum bypass size represents

physical system limitations and not bypass policy restrictions (such policies are defined by the

platform, and typically enforced by the cryptographic subsystem, but are not accessible by the

standardized waveform APIs).

2.3.3.2 IRSS::Bypass::Consumer Interface Description

The IRSS::Bypass::Consumer interface is used by a waveform to receive bypass flows from the

IRSS that were originated from a IRSS::Bypass::Channel interface in a different security

domain. There are no inherent flow-control provisions supported by this interface – it is

assumed that the stream is consumed by the waveform. This does not preclude the waveform

from employing other mechanisms outside the range of this specification (e.g. waveform internal

flows, etc).

2.3.4 IRSS::IandA

There are several different IRSS::IandA (Integrity and Authentication) channel types that are

used to carry out common I&A functions. Except for random numbers (see below), the

algorithms used to perform these functions are not standardized in this specification, but rather

are provided by the IRSS implementation. When a waveform creates the IRSS::IandA channel

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 19

All Rights Reserved

(see section 2.3.1.2), it specifies the desired algorithm. The IRSS::IandA interface UML is

shown in Figure 12, with descriptions of the individual interfaces in the following subsections.

In addition, the IRSS::IandA module contains an interface related to the generation of random

numbers. As the algorithm is standardized here (pseudorandom) or not applicable (true random),

a channel concept is not used. This interface is described below in section 2.3.4.6.

2.3.4.1 IRSS::IandA::Channel Interface Description

Waveforms use the IRSS::IandA channels to perform a variety of I&A functions. In most cases,

use of such channels require supplying the IRSS with a quantity of data (typically using multiple

calls, as the data packet size is limited), and then when complete, asking for information back

which constitutes, the hash, signature or MAC.

The IRSS::IandA::Channel interface is an abstract base interface that allows clients to push data

to the IRSS. Data is pushed in chunks not to exceed the maximum data size as defined by

GetMaxDataSize(). Actual concrete interfaces then specialize this interface with specific

operations for retrieval of outputs. These are detailed in subsequent subsections.

Once one of the specialized concrete channels have been created, a client uses

GetMaxDataSize() to find the maximum amount of data that can be passed in a call. They then

can push multiple packets into a channel using PushData() When done, the specialized

operations (see following sections) can be used to retrieve the results. Once done, a channel can

be cleared and prepared for reuse using the Reset() operation. In this way, waveforms do not

need to destroy and recreate the channel when multiple functions need to be accomplished.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 20

All Rights Reserved

Figure 12 - IRSS::IandA::Channel Interfaces

2.3.4.2 IRSS::IandA::HashChannel Interface Description

IRSS::IandA::HashChannel is an interface that allows a client to use an IRSS::IandA::Channel

for generating hashes. The hash is performed using the algorithm specified at channel creation.

A client can retrieve a hash result after pushing all the data to be hashed to the IRSS.

2.3.4.3 IRSS::IandA::MacChannel Interface Description

IRSS::IandA::MacChannel is an interface that allows a client to use an IRSS::IandA::Channel to

compute and verify a MAC. The MAC is performed using the algorithm specified at channel

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 21

All Rights Reserved

creation. A client can retrieve a MAC after pushing all the data to the IRSS or a client can verify

a MAC by passing in the MAC to match.

2.3.4.4 IRSS::IandA::SignatureChannel Interface Description

IRSS::IandA::SignatureChannel is an interface that allows a client to generate a signature. The

signature is performed using the algorithm specified at channel creation. A client can retrieve a

signature after pushing all the data to be signed to the IRSS.

2.3.4.5 IRSS::IandA::SignatureVerificationChannel Interface Description

IRSS::IandA::SignatureVerificationChannel is an interface that allows a client to verify a

signature. A client can verify a signature after pushing all the data to be signed to the IRSS. A

client passes the signature to match to the IRSS and gets the result via the IsSignatureValid()

operation. The signature is performed using the algorithm specified at channel creation.

2.3.4.6 IRSS::IandA::Random Interface Description

IRSS::IandA::Random is an interface that can be used to generate true random numbers (via

GetRandom()) or pseudo random numbers using a seed (via GetPseudoRandom()).

The IRSS::IandA::Random interface is shown in Figure 13.

Figure 13 - IRSS::IandA::Random Interface

2.3.5 IRSS::Protocol

2.3.5.1 IRSS::Protocol::Channel Interface Description

Protocol channels, while typically used to exchange a series of algorithm-specific protocol

messages to the IRSS5, can be used in other ways as well – essentially providing a generic

exchange between the waveform and the IRSS, which in turn is interpreted by the associated

Cryptographic Application. Messages have a maximum size as defined by the protocol

definition.

5 An example would be when negotiating an asymmetric key for IPSEC, etc – where the IRSS is used to perform

transformations in generating IPSEC messages.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 22

All Rights Reserved

The IRSS::Protocol::Channel interface is shown in Figure 14.

Figure 14 - IRSS::Protocol::Channel Interface

2.3.5.2 IRSS::Protocol::Consumer Interface Description

Waveform clients provide the IRSS::Protocol::Consumer interface. The IRSS uses this interface

to push protocol messages to the client.

The IRSS::Protocol::Consumer interface is shown in Figure 15.

Figure 15 - IRSS::Protocol::Consumer Interface

2.4 Sequence Diagrams

2.4.1 Two Security Domain Cryptographic Channel

Description

This sequence diagram shows how to create and use a single cryptographic channel for

encryption and decryption of packets in a two security domain implementation. The sequence

includes the use of the flow control aspects of the API (see steps 11 – 14).

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 23

All Rights Reserved

Note that the IRSS is shown as a single entity for simplicity. In a two security domain solution

there would be an IRSS instance on the PT side and another on the CT side of the system.

Pre-conditions

The CSS has resources available to allow the creation of the cryptographic channel.

Post-conditions

The cryptographic channel is active and ready to process more data.

Figure 16 - Two Security Domain Cryptographic Channel Sequence Diagram

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 24

All Rights Reserved

2.4.2 Single Security Domain Cryptographic Channel

Description

This sequence diagram shows how to create and use a single cryptographic channel for

encryption and decryption of packets in a single security domain implementation. The IRSS will

need to provide both PT and CT ports implementing the CryptographicChannel interface. The

WF will need to provide both PT and CT ports implementing the CryptographicConsumer

interface.

Pre-conditions

The CSS has resources available to allow the creation of the cryptographic channel.

Post-conditions

The cryptographic channel is active and ready to process more data.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 25

All Rights Reserved

Figure 17 - Single Security Domain Cryptographic Channel Sequence Diagram

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 26

All Rights Reserved

2.4.3 Stream Multi Channels

Description

This sequence diagram shows a waveform that needs to process two simultaneous incoming

streams. Each stream may have its own algorithm and/or key. The waveform creates and

configures a channel with a single configuration based on learning details of each incoming

stream. The cryptographic state is kept with each cryptographic channel. This allows the two

streams to be alternately processed through the crypto, each keeping its own overall message

state.

Note that the IRSS is shown as a single entity for simplicity. In a two security domain solution

there would be an IRSS instance on the PT side and another on the CT side of the system.

Pre-conditions

The CSS has resources available to allow the creation of the two cryptographic channels.

Post-conditions

The cryptographic channels have been destroyed, their state cleared, and their resources are

available for use.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 27

All Rights Reserved

Figure 18 - Stream Multi Channels Sequence Diagram

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 28

All Rights Reserved

2.4.4 TRANSEC - Encrypt/Decrypt

Description

This sequence diagram shows how to create and use a single TRANSEC channel for encryption

and decryption to cover and uncover a data stream. The algorithm gets reinitialized whenever a

new seed is passed in. The payload parameter of the encrypt and decrypt operations is an inout

parameter.

Note that the IRSS is shown as a single entity for simplicity. In a two security domain solution

there would be an IRSS instance on the PT side and another on the CT side of the system.

Pre-conditions

The CSS has resources available to allow the creation of the TRANSEC channel. The bypass

channel has already been created and is available for the waveform to use.

Post-conditions

The TRANSEC channel is still active and able to encrypt and decrypt.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 29

All Rights Reserved

Figure 19 - TRANSEC - Encrypt/Decrypt Sequence Diagram

2.4.5 TRANSEC – Keystream

Description

This sequence diagram shows how to create and use a single TRANSEC channel for generation

of key stream. The key stream generation algorithm gets reinitialized whenever a new seed is

passed in. Both the size of the seed and the requested size of key stream to be generated are

specified in number of bits. The seed itself and the returned key stream data are

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 30

All Rights Reserved

CF::OctetSequences. The number of bytes in the returned key stream may be padded out to be a

multiple of the algorithm’s block size.

Note that the IRSS is shown as a single entity for simplicity. In a two security domain solution

there would be an IRSS instance on the PT side and another on the CT side of the system.

Pre-conditions

The CSS has resources available to allow the creation of the TRANSEC channel. The bypass

channel has already been created and is available for the waveform to use.

Post-conditions

The TRANSEC channel is still active and able generate keystream.

Figure 20 - TRANSEC - Keystream Sequence Diagram

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 31

All Rights Reserved

2.4.6 Bypass Channels

Description

This example shows the full bypass channel lifecycle. A single bypass channel provides for

bypassing of information sourced from security domain A and sunk to security domain B. To

support two way bypass traffic between two security domains requires a pair of bypass channels.

For this example PtToCt and CtToPt bypass channels are created and used. Each bypass

message has to be smaller than the maximum size allowed on the platform. A client determines

this value by calling GetMaxBypassSize(). The bypass policy being enforced by the

cryptographic subsystem may impose further constraints on the bypass traffic.

Pre-conditions

The CSS has resources available to allow the creation of the bypass channel.

Post-conditions

The bypass channels have been destroyed and the resources have been released.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 32

All Rights Reserved

Figure 21 - Bypass Channels Sequence Diagram

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 33

All Rights Reserved

2.4.7 Hash Channels

Description

At channel creation time, the hash algorithm (e.g. MD5, SHA-256, etc.) is selected along with

the crypto module and endpoint. The waveform client needs to query for the maximum data size

that can be handled by the channel since this value will be platform specific. The client then

breaks up the data to be hashed into multiple chunks smaller than the maximum data size and

pushes the data to the hash channel. The GetHash() method returns the hash of the data

processed since the channel was created or last reset.

Pre-conditions

The CSS has resources available to allow the creation of a Hash Channel.

Post-conditions

The Hash Channel is active and ready to process more data.

Figure 22 - HashChannel Sequence Diagram

2.4.8 Protocol

Description

This sequence diagram shows a possible example of Protocol channel usage. This example is a

subset of required operations for generating a session key using IKE. After the channel is

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 34

All Rights Reserved

created, protocol messages are passed between the WF component and IRSS via the

PushMessage() method. This example is not a normative description of how an IKE protocol

channel would work.

Pre-conditions

The CSS has resources available to allow the creation of the Protocol Channel.

Post-conditions

The Protocol Channel is still active and able to process messages.

Figure 23 - Protocol Sequence Diagram

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 35

All Rights Reserved

3 Service Primitives and Attributes

3.1 IRSS::Bypass::Channel

3.1.1 PushBypass Operation

This operation pushes bypass messages through the crypto module.

The maximum bypass message size allowed can be retrieved from the GetMaxBypassSize()

operation.

Note: Bypass traffic is expected to be at a low rate, and therefore, flow control is not built into

the interface.

3.1.1.1 Synopsis

void PushBypass(in IRSS::ChannelId channel, in CF::OctetSequence bypass)

raises(IRSS::InvalidChannelId, MaxBypassSizeExceeded, PolicyViolation);

3.1.1.2 Parameters

Parameter

Name

Type Description

channel IRSS::ChannelId Identifies the bypass channel

bypass CF::OctetSequence The bypass message to push

3.1.1.3 Return Value

None

3.1.1.4 Originator

Waveform clients

3.1.1.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid bypass

channel identifier

MaxBypassSizeExceeded The maximum bypass size was exceeded

PolicyViolation The requested bypass operation violates the bypass

policy for the channel

3.1.2 GetMaxBypassSize Operation

This operation allows waveform clients to retrieve a channel’s maximum bypass size. This

maximum bypass size represents physical system limitations and not bypass policy restrictions

(as enforced by the cryptographic subsystem), which will likely be less than the physical system

limitations.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 36

All Rights Reserved

3.1.2.1 Synopsis

unsigned long GetMaxBypassSize(in IRSS::ChannelId channel)

raises(IRSS::InvalidChannelId);

3.1.2.2 Parameters

Parameter

Name

Type Description

channel IRSS::ChannelId Identifies the bypass channel

3.1.2.3 Return Value

Type Description Valid Range

unsigned long Maximum bypass message

size in octets.

Channel dependent

3.1.2.4 Originator

Waveform clients

3.1.2.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid bypass

channel identifier

3.2 IRSS::Bypass::Consumer

Waveform clients provide the IRSS::Bypass::Consumer interface

3.2.1 PushBypass Operation

This operation forwards a bypassed message back to a waveform client.

Note: Bypass traffic is expected to be at a low rate, and therefore, flow control is not built into

the interface. A maximum message size allowed exists for any given bypass message.

3.2.1.1 Synopsis

void PushBypass(in CF::OctetSequence bypass);

3.2.1.2 Parameters

Parameter

Name

Type Description

bypass CF::OctetSequence The message that was bypassed.

3.2.1.3 Return Value

None

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 37

All Rights Reserved

3.2.1.4 Originator

Radio Security Service

3.2.1.5 Exceptions

None

3.3 IRSS::Control::CertificateMgmt

Client interface provided by the IRSS for managing certificates by waveform clients.

3.3.1 RetrieveCertificate Operation

This operation returns the public portion of the requested certificate. It does not include the

private key.

3.3.1.1 Synopsis

CF::OctetSequence RetrieveCertificate(in CertificateId certId) raises(InvalidCertificateId);

3.3.1.2 Parameters

Parameter Name Type Description

certId CertificateId The ID of the certificate being requested

3.3.1.3 Return Value

Type Description Valid Range

CF::OctetSequence The certificate data. Certificate data is returned in X.509v3

format as specified in RFC 3280.

3.3.1.4 Originator

Waveform clients

3.3.1.5 Exceptions

Exception Description

InvalidCertificateId The certificate ID is not a valid certificate ID

3.3.2 GetCertficateIds Operation

This operation retrieves all IDs for the certificates that have been loaded into, and are managed

by, the IRSS.

3.3.2.1 Synopsis

CertificateIdSequence GetCertificateIds();

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 38

All Rights Reserved

3.3.2.2 Parameters

None

3.3.2.3 Return Value

Type Description Valid Range

CertificateIdSequence The IDs of all valid certificates

currently being managed

Platform dependent

3.3.2.4 Originator

Waveform clients

3.3.2.5 Exceptions

None

3.3.3 IsCertficateValid Operation

This operation checks if the certificate passed in is a valid certifcate. Possible reasons for a

certificate being invalid include: a certificate does not trace to a known trust anchor, it is expired,

the certificate has been revoked, etc.

3.3.3.1 Synopsis

boolean IsCertificateValid(in CF::OctetSequence certificate) raises(UnrecognizedCertificate

);

3.3.3.2 Parameters

Parameter Name Type Description

certificate CF::OctetSequence The certificate data in X.509v3 format as

specified in RFC 3280.

3.3.3.3 Return Value

Type Description Valid Range

boolean Indicates whether the certificate

is valid.

TRUE=The passed in certificate is valid

FALSE=The passed in certificate is not valid

3.3.3.4 Originator

Waveform clients

3.3.3.5 Exceptions

Exception Description

UnrecognizedCertificate The passed in certificate data could not be recognized

as a certificate

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 39

All Rights Reserved

3.4 IRSS::Control::ChannelMgmt

Client interface provided by the IRSS for creating and managing channels.

3.4.1 CreateCryptographicChannel Operation

This operation creates a cryptographic channel for the purpose of encrypting and decrypting user

data. Cryptographic resources are allocated at channel creation time. Before a cryptographic

channel can be used it must be configured and activated. Cryptographic channels are configured

by calling AddCryptographicConfiguration() (see 3.4.10) to add a configuration to the channel

and then activated by calling ActivateConfiguration() (see 3.4.13) to activate it.

The channel duplexity is specified at creation time to allow the CSS to allocate resources for the

channel. However, the actual duplexity used can vary with the active configuration. To ensure

proper resource allocation, a waveform should specify the needed duplexity requiring the most

CSS resources at channel creation time. For these purposes, duplexity can be ordered in

increasing CSS resource requirements as follows:

• SIMPLEX_RX, SIMPLEX_TX (low)

• HALF_DUPLEX

• FULL_DUPLEX (high)

3.4.1.1 Synopsis

IRSS::ChannelId CreateCryptographicChannel(in CryptoModuleId cm, in EndpointId

ptEndpoint, in EndpointId ctEndpoint, in CryptoApplicationIdSequence cryptoApps, in Duplexity

channelDuplexity) raises(InvalidModuleId, InvalidEndpointId, InvalidEndpointPair,

InvalidCryptoApplicationId, ChannelCreationError);

3.4.1.2 Parameters

Parameter Name Type Description

cm CryptoModuleId The identifier of the

Cryptographic module in

which to create the channel

ptEndpoint EndpointId The number identifying the

PT side crypto module

access point

ctEndpoint EndpointId The number identifying the

CT side crypto module

access point

cryptoApps CryptoApplicationIdSequence The list of cryptographic

application IDs that will be

used on this channel

channelDuplexity Duplexity The duplexity usage

requiring the most CSS

resources.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 40

All Rights Reserved

3.4.1.3 Return Value

Type Description Valid Range

IRSS::ChannelId The identifier of the

cryptographic channel created

Platform dependent

3.4.1.4 Originator

Waveform clients

3.4.1.5 Exceptions

Exception Description

InvalidModuleId The crypto module ID is not a valid crypto

module ID

InvalidEndpointId The endpoint ID is not a valid endpoint ID

InvalidEndpointPair A channel cannot be created between the

endpoints specified

ChannelCreationError The channel could not be created. This could be

due to insufficient resources being available, an

invalid combination of application IDs within the

cryptoApps, or other reasons.

InvalidCryptoApplicationId A crypto application ID is not a valid crypto

application ID

3.4.2 CreateTransecChannel Operation

This operation creates a TRANSEC channel for the purpose of encrypting data for transmission.

Cryptographic resources are allocated at channel creation time.

The channel duplexity is specified at creation time to allow the CSS to allocate resources for the

channel. However, the actual duplexity used can vary with the active configuration. To ensure

proper resource allocation, a waveform should specify the needed duplexity requiring the most

CSS resources at channel creation time. For these purposes, duplexity can be ordered in

increasing CSS resource requirements as follows:

• SIMPLEX_RX, SIMPLEX_TX (low)

• HALF_DUPLEX

• FULL_DUPLEX (high)

3.4.2.1 Synopsis

IRSS::ChannelId CreateTransecChannel(in CryptoModuleId cm, in EndpointId endpoint, in

CryptoApplicationIdSequence cryptoApps, in Duplexity channelDuplexity) raises(

InvalidModuleId, InvalidCryptoApplicationId, ChannelCreationError, InvalidEndpointId);

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 41

All Rights Reserved

3.4.2.2 Parameters

Parameter Name Type Description

cm CryptoModuleId The identifier of the

Cryptographic module in

which to create the channel

endpoint EndpointId The number identifying the

crypto module access point

cryptoApps CryptoApplicationIdSequence The list of cryptographic

application IDs that will be

used on this channel

channelDuplexity Duplexity The duplexity usage

requiring the most CSS

resources.

3.4.2.3 Return Value

Type Description Valid Range

IRSS::ChannelId The identifier of the

TRANSEC channel created

Platform dependent

3.4.2.4 Originator

Waveform clients

3.4.2.5 Exceptions

Exception Description

InvalidModuleId The crypto module ID is not a valid crypto module

ID

InvalidEndpointId The endpoint ID is not a valid endpoint ID

ChannelCreationError The channel could not be created. This could be

due to insufficient resources being available, an

invalid combination of application IDs within the

cryptoApps, or other reasons.

InvalidCryptoApplicationId A crypto application ID is not a valid crypto

application ID

3.4.3 CreateBypassChannel Operation

This operation creates a bypass channel. Bypass channels are used to move control information

through the cryptographic subsystem.

3.4.3.1 Synopsis

IRSS::ChannelId CreateBypassChannel(in CryptoModuleId cm, in EndpointId sourceEndpoint,

in EndpointId destinationEndpoint) raises(ChannelCreationError, InvalidModuleId,

InvalidEndpointId, InvalidEndpointPair);

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 42

All Rights Reserved

3.4.3.2 Parameters

Parameter Name Type Description

cm CryptoModuleId The identifier of the Cryptographic

module in which to create the

channel

sourceEndpoint EndpointId The number identifying the bypass

channel’s source crypto module

access point

destinationEndpoint EndpointId The number identifying the bypass

channel’s destination crypto

module access point

3.4.3.3 Return Value

Type Description Valid Range

IRSS::ChannelId The identifier of the bypass

channel created.

Platform dependent

3.4.3.4 Originator

Waveform clients

3.4.3.5 Exceptions

Exception Description

InvalidEndpointId The endpoint ID is not a valid endpoint ID

InvalidEndpointPair A channel cannot be created between the

endpoints specified

ChannelCreationError The channel could not be created

InvalidModuleId The crypto module ID is not a valid crypto module

ID

3.4.4 CreateHashChannel Operation

This operation creates a hash channel. Hash channels are used to generate a hash on data that

has already been pushed into the channel.

3.4.4.1 Synopsis

IRSS::ChannelId CreateHashChannel(in CryptoModuleId cm, in EndpointId inputEndpoint, in

HashAlgorithmId hashAlogrithm) raises(ChannelCreationError, InvalidModuleId,

InvalidEndpointId, InvalidAlgorithmId);

3.4.4.2 Parameters

Parameter Name Type Description

cm CryptoModuleId The identifier of the Cryptographic

module to create the channel in

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 43

All Rights Reserved

inputEndpoint EndpointId The number identifying the hash

channel’s source crypto module access

point

hashAlgorithm HashAlgorithmId The identifier of the Hash algorithm to

use.

3.4.4.3 Return Value

Type Description Valid Range

IRSS::ChannelId The identifier of the hash

channel created.

Platform dependent

3.4.4.4 Originator

Waveform clients

3.4.4.5 Exceptions

Exception Description

InvalidEndpointId The endpoint ID is not a valid endpoint ID

InvalidAlgorithmId The algorithm specified is not a supported hash

algorithm or is not a valid algorithm ID

ChannelCreationError The channel could not be created

InvalidModuleId The crypto module ID is not a valid crypto module

ID

3.4.5 CreateMacChannel Operation

This operation creates a MAC channel. MAC channels are used to generate a MAC for the data

which has already been passed in.

3.4.5.1 Synopsis

IRSS::ChannelId CreateMacChannel(in CryptoModuleId cm, in EndpointId inputEndpoint, in

MacAlgorithmId macAlogrithmId, in KeyId macKeyId) raises(InvalidKeyId,

ChannelCreationError, InvalidAlgorithmId, InvalidModuleId, InvalidEndpointId);

3.4.5.2 Parameters

Parameter Name Type Description

cm CryptoModuleId The identifier of the Cryptographic

module in which to create the channel

inputEndpoint EndpointId The number identifying the MAC

channel’s input crypto module access

point

macAlgorithmId MacAlgorithmId The identifier of the MAC algorithm to

use.

macKeyId KeyId The identifier of the Key to use.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 44

All Rights Reserved

3.4.5.3 Return Value

Type Description Valid Range

IRSS::ChannelId The identifier of the MAC

channel created.

Platform dependent

3.4.5.4 Originator

Waveform clients

3.4.5.5 Exceptions

Exception Description

InvalidKey The key ID specified is not a valid key ID or does

not specify a MAC key.

ChannelCreationError The channel could not be created

InvalidAlgorithmId The algorithm specified is not a supported MAC

algorithm or is not a valid algorithm ID

InvalidModuleId The crypto module ID is not a valid crypto module

ID

InvalidEndpointId The endpoint ID is not a valid endpoint ID

3.4.6 CreateSignatureChannel Operation

This operation creates a signature channel. Signature channels are used to generate a digital

signature over data.

3.4.6.1 Synopsis

IRSS::ChannelId CreateSignatureChannel(in CryptoModuleId cm, in EndpointId

inputEndpoint, in SignatureAlgorithmId algorithmId, in CertificateId certId) raises(

InvalidCertificateId, ChannelCreationError, InvalidModuleId, InvalidEndpointId,

InvalidAlgorithmId);

3.4.6.2 Parameters

Parameter Name Type Description

cm CryptoModuleId The identifier of the

Cryptographic module in which

to create the channel

inputEndpoint EndpointId The number identifying the

signature channel’s access point

into the crypto module

algorithmId SignatureAlgorithmId The identifier of the Signature

algorithm to use.

certId CertificateId The identifier of the Certificate

to use.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 45

All Rights Reserved

3.4.6.3 Return Value

Type Description Valid Range

IRSS::ChannelId The identifier of the signature

channel created

Platform dependent

3.4.6.4 Originator

Waveform clients

3.4.6.5 Exceptions

Exception Description

InvalidCertificateId The certificate ID specified is not a valid

certificate ID

ChannelCreationError The channel could not be created

InvalidAlgorithmId The algorithm specified is not a supported

signature algorithm or is not a valid algorithm ID

InvalidModuleId The crypto module ID is not a valid crypto module

ID

InvalidEndpointId The endpoint ID is not a valid endpoint ID

3.4.7 CreateSignatureVerificationChannel Operation

This operation creates a signature verification channel. Signature verification channels are used

to verify a digital signature.

3.4.7.1 Synopsis

IRSS::ChannelId CreateSignatureVerificationChannel(in CryptoModuleId cm, in EndpointId

inputEndpoint, in SignatureAlgorithmId algorithmId, in CF::OctetSequence publicKey) raises(

ChannelCreationError, InvalidModuleId, InvalidEndpointId, InvalidKey, InvalidAlgorithmId);

3.4.7.2 Parameters

Parameter Name Type Description

cm CryptoModuleId The identifier of the

Cryptographic module in which

to create the channel

inputEndpoint EndpointId The number identifying the

signature verification channel’s

input crypto module access

point

algorithmId SignatureAlgorithmId The identifier of the Signature

algorithm to use.

publicKey CF::OctetSequence The Public key used to verify

the signature.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 46

All Rights Reserved

3.4.7.3 Return Value

Type Description Valid Range

IRSS::ChannelId The identifier of the signature verification

channel created.

Platform dependent

3.4.7.4 Originator

Waveform clients

3.4.7.5 Exceptions

Exception Description

InvalidKey The key specified is not a valid key

ChannelCreationError The channel could not be created

InvalidAlgorithmId The algorithm specified is not a supported

signature algorithm or is not a valid algorithm ID

InvalidModuleId The crypto module ID is not a valid crypto module

ID

InvalidEndpointId The endpoint ID is not a valid endpoint ID

3.4.8 CreateProtocolChannel Operation

This operation creates a protocol channel. Protocol channels are used to send and receive

protocol messages to and from the cryptographic subsystem. Protocol channels can be single

sided with a single endpoint ID. For a single sided protocol channel, the constant

UNUSED_ENDPOINT_ID should be passed in for either the ptEndpoint or ctEndpoint

parameters. Providing both endpoints results in a protocol channel capable of handling input

from one security domain, processing by the CSS, and results delivered to a different security

domain.

3.4.8.1 Synopsis

IRSS::ChannelId CreateProtocolChannel(in CryptoModuleId cm, in EndpointId ptEndpoint, in

EndpointId ctEndpoint, in CrptoApplicationId protocolApplicationId) raises(

ChannelCreationError, InvalidModuleId, InvalidEndpointId,

InvalidCryptographicApplicationId, InvalidEndpointPair);

3.4.8.2 Parameters

Parameter Name Type Description

Cm CryptoModuleId The identifier of the Cryptographic

module in which to create the channel

ptEndpoint EndpointId The number identifying the protocol

channel’s PT side crypto module

access point

ctEndpoint EndpointId The number identifying the protocol

channel’s CT side crypto module

access point.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 47

All Rights Reserved

protocolApplicationId CryptoApplicationId ID specifying the crypto application

that contains the desired protocol.

3.4.8.3 Return Value

Type Description Valid Range

IRSS::ChannelId The identifier of the protocol channel

created

Platform dependent

3.4.8.4 Originator

Waveform clients

3.4.8.5 Exceptions

Exception Description

ChannelCreationError The channel could not be created

InvalidCryptoApplicationId The crypto application ID specified is not a

supported crypto application or is not a valid

crypto application ID

InvalidModuleId The crypto module ID is not a valid crypto module

ID

InvalidEndpointId The endpoint ID is not a valid endpoint ID

InvalidEndpointPair A channel cannot be created between the

endpoints specified.

3.4.9 DestroyChannel Operation

This operation destroys a channel. Cryptographic resources allocated to the channel are returned

to the system and the channel can no longer be used after this operation returns.

3.4.9.1 Synopsis

void DestroyChannel(in IRSS::ChannelId channel) raises(IRSS::InvalidChannelId);

3.4.9.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the channel to be destroyed

3.4.9.3 Return Value

None

3.4.9.4 Originator

Waveform clients

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 48

All Rights Reserved

3.4.9.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid channel

identifier

3.4.10 AddCryptographicConfiguration Operation

This operation adds a configuration to a cryptographic channel using the parameters passed in.

Multiple configurations can be added to a channel, but only one configuration may be active at

any time.

3.4.10.1 Synopsis

ConfigurationId AddCryptographicConfiguration(in IRSS::ChannelId channel, in

CryptographicConfiguration configuration) raises(IRSS::InvalidChannelId,

InvalidConfiguration);

3.4.10.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the

cryptographic channel to

add the configuration to.

configuration CryptographicConfiguration The Cryptographic

configuration to add.

3.4.10.3 Return Value

Type Description Valid Range

ConfigurationId The identifier of the configuration

added.

Platform dependent

3.4.10.4 Originator

Waveform clients

3.4.10.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid channel

identifier or is not the identifier for a cryptographic

channel.

InvalidConfiguration The configuration contains invalid or conflicting

elements

3.4.11 AddTransecConfiguration Operation

This operation adds a configuration to a TRANSEC channel using the parameters passed in.

Multiple configurations can be added to a channel, but only one may be active at any time.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 49

All Rights Reserved

3.4.11.1 Synopsis

ConfigurationId AddTransecConfiguration(in IRSS::ChannelId channel, in

TransecConfiguration configuration) raises(IRSS::InvalidChannelId, InvalidConfiguration);

3.4.11.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the

TRANSEC channel to add

the configuration to.

configuration TransecConfiguration The TRANSEC

configuration to add.

3.4.11.3 Return Value

Type Description Valid Range

ConfigurationId The identifier of the

configuration added.

Platform dependent

3.4.11.4 Originator

Waveform clients

3.4.11.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid channel

identifier or is not the identifier for a TRANSEC

channel.

InvalidConfiguration The configuration contains invalid or conflicting

elements

3.4.12 RemoveConfiguration Operation

This operation removes a configuration from a cryptographic or TRANSEC channel.

3.4.12.1 Synopsis

void RemoveConfiguration(in ConfigurationId channelConfigId) raises(

InvalidConfigurationId);

3.4.12.2 Parameters

Parameter Name Type Description

channelConfigId ConfigurationId The identifier of the configuration to

remove.

3.4.12.3 Return Value

None

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 50

All Rights Reserved

3.4.12.4 Originator

Waveform clients

3.4.12.5 Exceptions

Exception Description

InvalidConfigurationId The configuration ID is not a valid configuration ID

3.4.13 ActiviateConfiguration Operation

This operation activates a previously added configuration on a cryptographic or TRANSEC

channel. Any cryptographic state from the prior configuration is cleared. Although a

DeactivateConfiguration() (see 3.4.14) is defined, it is permissible to switch to a new

configuration by calling ActivateConfiguration() without first deactivating the current

configuration.

3.4.13.1 Synopsis

void ActivateConfiguration(in ConfigurationId channelConfigId, in CF::OctetSequence

activationData) raises(InvalidConfigurationId, ConfigurationActivationError);

3.4.13.2 Parameters

Parameter Name Type Description

channelConfigId ConfigurationId The identifier of the configuration to activiate

(the channel is implied by this identifier).

activationData CF::OctetSequence Optional control or configuration information for

use with the configuration being activated. Note

that most configuration is set via the

AddCryptographicConfiguration() (see 3.4.10)

and AddTransecConfiguration() (see 3.4.11)

operations.

3.4.13.3 Return Value

None

3.4.13.4 Originator

Waveform clients

3.4.13.5 Exceptions

Exception Description

InvalidConfigurationId The configuration ID is not a valid configuration

ID

ConfigurationActivationError A configuration could not be activated

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 51

All Rights Reserved

3.4.14 DeactivateConfiguration Operation

This operation deactivates an active configuration on a cryptographic or TRANSEC channel.

Any cryptographic state of the channel is lost. The channel itself is not destroyed.

3.4.14.1 Synopsis

void DeactivateConfiguration(in ConfigurationId channelConfigId) raises(

IRSS::ConfigurationInactive, InvalidConfigurationId);

3.4.14.2 Parameters

Parameter Name Type Description

channelConfigId ConfigurationId The identifier of the configuration to be

deactivated.

3.4.14.3 Return Value

None

3.4.14.4 Originator

Waveform clients

3.4.14.5 Exceptions

Exception Description

IRSS::ConfigurationInactive The configuration being deactivated is not an

active configuration

InvalidConfigurationId The configuration ID is not a valid configuration

ID

3.5 IRSS::Control::KeyMgmt

3.5.1 UpdateKey Operation

This operation generates a new key from the existing key using a key update algorithm. This

operation is used to generate an updated key for a key type that has only one available update

algorithm.

The existing key is replaced by the new key.

3.5.1.1 Synopsis

void UpdateKey(in KeyId updateKeyId) raises(InvalidKeyId, KeyUpdateError);

3.5.1.2 Parameters

Parameter Name Type Description

updateKeyId KeyId The ID of the key to be updated

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 52

All Rights Reserved

3.5.1.3 Return Value

None

3.5.1.4 Originator

Waveform clients

3.5.1.5 Exceptions

Exception Description

InvalidKeyId The key ID specified is not a valid key ID

KeyUpdateError The key could not be updated

3.5.2 UpdateKeyWithAlgorithm Operation

This operation generates a new key from the existing key using a key update algorithm. The

algorithm must be specified. This operation is used to update a key that has more than one

available update algorithm.

The existing key is replaced by the new key.

3.5.2.1 Synopsis

void UpdateKeyWithAlgorithm(in KeyId updateKeyId, in KeyUpdateAlgorithmId algorithm)

raises(InvalidKeyId, KeyUpdateError, InvalidKeyUpdateAlgorithmId);

3.5.2.2 Parameters

Parameter Name Type Description

updateKeyId KeyId The ID of the key to be updated

algorithm KeyUpdateAlgorithmId The identifier of the algorithm to

use for updating the key

3.5.2.3 Return Value

None

3.5.2.4 Originator

Waveform clients

3.5.2.5 Exceptions

Exception Description

InvalidKeyId The key ID specified is not a valid key ID

KeyUpdateError The key could not be updated

InvalidKeyUpdateAlgorithmId The key update algorithm ID is not a valid key

update algorithm ID for this key

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 53

All Rights Reserved

3.5.3 GetUpdateCount Operation

This operation returns the number of times a key has been updated.

3.5.3.1 Synopsis

unsigned short GetUpdateCount(in KeyId updateCountKeyId) raises(InvalidKeyId);

3.5.3.2 Parameters

Parameter Name Type Description

updateCountKeyId KeyId The ID of the key whose update count is

being requested

3.5.3.3 Return Value

Type Description Valid Range

unsigned short The update count of the key

requested.

Platform dependent

3.5.3.4 Originator

Waveform clients

3.5.3.5 Exceptions

Exception Description

InvalidKeyId The key ID specified is not a valid key ID

3.5.4 ZeroizeKey Operation

This operation destroys the designated key.

3.5.4.1 Synopsis

void ZeroizeKey(in KeyId zeroizeKeyId) raises(InvalidKeyId);

3.5.4.2 Parameters

Parameter Name Type Description

zeroizeKeyId KeyId The identifier of the Key to zeroize.

3.5.4.3 Return Value

None

3.5.4.4 Originator

Waveform clients

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 54

All Rights Reserved

3.5.4.5 Exceptions

Exception Description

InvalidKeyId The key ID specified is not a valid key ID

3.6 IRSS::IandA::Channel

An abstract base class that allows clients to push data to the IRSS.

3.6.1 PushData Operation

This operation pushes data to the specified channel where it will be processed by the algorithm

configured for that channel. Data size must not exceed the maximum data size as defined by

GetMaxDataSize() (see 3.6.2).

3.6.1.1 Synopsis

void PushData(in IRSS::ChannelId channel, in CF::OctetSequence data) raises(

IRSS::InvalidChannelId,MaxDataSizeExceeded);

3.6.1.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The ID of the channel receiving the data

data CF::OctetSequence The data being pushed into the IRSS

3.6.1.3 Return Value

None

3.6.1.4 Originator

Waveform clients

3.6.1.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid channel

identifier or is not the identifier for an I&A channel.

MaxDataSizeExceeded A client made an attempt to push data that exceeded

the maximum allowable size

3.6.2 GetMaxDataSize Operation

This operation returns the maximum data size, in octets, allowed on the specified channel. Data

pushed via PushData() operation (see 3.6.1) must not exceed this size.

3.6.2.1 Synopsis

unsigned long GetMaxDataSize(in IRSS::ChannelId channel) raises(IRSS::InvalidChannelId);

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 55

All Rights Reserved

3.6.2.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the Channel to get the max

data size for.

3.6.2.3 Return Value

Type Description Valid Range

unsigned long Maximum data size in octets. Channel dependent

3.6.2.4 Originator

Waveform clients

3.6.2.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid channel

identifier or is not the identifier for an I&A channel.

3.6.3 Reset Operation

This operation resets the state of a the IandA channel. The channel is still configured with the

information provided at channel creation time. Any computed values from the algorithm

operating on the data pushed in via the PushData() operation (see 3.6.1) are reset. This operation

should be called before reusing a channel for a new data set.

3.6.3.1 Synopsis

void Reset(in IRSS::ChannelId channel) raises (IRSS::InvalidChannelId);

3.6.3.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the Channel to reset.

3.6.3.3 Return Value

None

3.6.3.4 Originator

Waveform clients

3.6.3.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid channel

identifier or is not the identifier for an I&A channel.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 56

All Rights Reserved

3.7 IRSS::IandA::HashChannel

3.7.1 GetHash Operation

This operation returns the hash of the data pushed to the channel since it was created or last reset.

3.7.1.1 Synopsis

CF::OctetSequence GetHash(in IRSS::ChannelId channel) raises(IRSS::InvalidChannelId,

InvalidState);

3.7.1.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the hash channel to use.

3.7.1.3 Return Value

Type Description Valid Range

CF::OctetSequence The hash Algorithm dependent

3.7.1.4 Originator

Waveform clients

3.7.1.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid channel

identifier or is not the identifier for a hash channel.

InvalidState The system is not in the correct state to complete the

operation. For example, data has not yet been pushed

to the channel.

3.8 IRSS::IandA::MacChannel

3.8.1 GetMac Operation

This operation returns the MAC of the data pushed to the channel since it was created or last

reset.

3.8.1.1 Synopsis

CF::OctetSequence GetMac(in IRSS::ChannelId channel) raises(IRSS::InvalidChannelId,

InvalidState);

3.8.1.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the MAC channel to use.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 57

All Rights Reserved

3.8.1.3 Return Value

Type Description Valid Range

CF::OctetSequence The MAC Algorithm dependent

3.8.1.4 Originator

Waveform clients

3.8.1.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid channel

identifier or is not the identifier for a MAC channel.

InvalidState The system is not in the correct state to complete the

operation. For example, data has not yet been pushed

to the channel

3.8.2 IsMacValid Operation

This operation verifies a MAC. When this operation is invoked, the security subsystem

compares the passed in MAC to the MAC it has calculated on the data pushed via PushData()

(see 3.6.1) since the channel was created or last reset. The result of the comparison is returned,

indicating if the client has a valid MAC or not.

3.8.2.1 Synopsis

boolean IsMacValid(in IRSS::ChannelId channel, in CF::OctetSequence mac) raises(

IRSS::InvalidChannelId, InvalidState, InvalidMac);

3.8.2.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the MAC channel to use.

mac CF::OctetSequence The MAC to be verified

3.8.2.3 Return Value

Type Description Valid Range

boolean Indicates whether the passed in

MAC is a valid MAC.

TRUE=The data is a valid MAC

FALSE=The data is not a valid MAC

3.8.2.4 Originator

Waveform clients

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 58

All Rights Reserved

3.8.2.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid channel

identifier or is not the identifier for a MAC channel.

InvalidState The system is not in the correct state to complete the

operation. For example, data has not yet been pushed

to the channel

InvalidMac The MAC given is not in the right size or format

3.9 IRSS::IandA::SignatureChannel

3.9.1 GetSignature Operation

This operation returns the digital signature of the data pushed to the channel since it was created

or last reset.

3.9.1.1 Synopsis

CF::OctetSequence GetSignature(in IRSS::ChannelId channel) raises(

IRSS::InvalidChannelId, InvalidState);

3.9.1.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the signature channel to

use.

3.9.1.3 Return Value

Type Description Valid Range

CF::OctetSequence The digital signature Algorithm dependent

3.9.1.4 Originator

Waveform clients

3.9.1.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid channel

identifier or is not the identifier for a signature

channel.

InvalidState The system is not in the correct state to complete the

operation. For example, data has not yet been pushed

to the channel.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 59

All Rights Reserved

3.10 IRSS::IandA::SignatureVerificationChannel

3.10.1 IsSignatureValid Operation

This operation verifies a signature. When this operation is invoked, the security subsystem

compares the passed in signature to the signature it has calculated on the data pushed via

PushData() (see 3.6.1) since the channel was created or last reset. The result of the comparison

is returned, indicating if the client has a valid signature.

3.10.1.1 Synopsis

boolean IsSignatureValid(in IRSS::ChannelId channel, CF::OctetSequence signature) raises(

IRSS::InvalidChannelId, InvalidState, InvalidSignature);

3.10.1.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the signature verification

channel to use.

signature CF::OctetSequence The signature to be verified

3.10.1.3 Return Value

Type Description Valid Range

boolean Indicates whether the passed in

signature matches.

TRUE=The passed in signature matches what the

security subsystem generated

FALSE=The passed in signature does not match

what the security subsystem generated

3.10.1.4 Originator

Waveform clients

3.10.1.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid channel

identifier or is not the identifier for a signature

verification channel.

InvalidState The system is not in the correct state to complete the

operation. For example, data has not yet been pushed

to the channel

InvalidSignature The passed in signature is not in the right size or

format.

3.11 IRSS::IandA::Random

3.11.1 GetPseudoRandomOperation

This operation returns a pseudorandom number.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 60

All Rights Reserved

3.11.1.1 Synopsis

CF::OctetSequence GetPseudoRandom(in unsigned short seed, in unsigned short numBytes);

3.11.1.2 Parameters

Parameter Name Type Description

seed unsigned short Number used to initialize the pseudorandom number

generator

numBytes unsigned short Length of random number in octets

3.11.1.3 Return Value

Type Description Valid Range

CF::OctetSequence The pseudorandom number 0 to 2(8*numBytes)-1

3.11.1.4 Originator

Waveform clients

3.11.1.5 Exceptions

None

3.11.2 GetRandom Operation

This operation returns a true random number.

3.11.2.1 Synopsis

CF::OctetSequence GetRandom(in unsigned short numBytes);

3.11.2.2 Parameters

Parameter Name Type Description

numBytes unsigned short Size of random number being requested in

octets

3.11.2.3 Return Value

Type Description Valid Range

CF::OctetSequence The random number. 0 to 2(8*numBytes)-1

3.11.2.4 Originator

Waveform clients

3.11.2.5 Exceptions

None

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 61

All Rights Reserved

3.12 IRSS::Infosec::CryptographicChannel

This interface is used by waveform clients for encryption and decryption. It supports streaming

modes and packet modes.

Streams have traditionally been employed by circuit switched legacy waveforms. Messages are

defined across multiple calls to the IRSS. Message boundaries are defined by flagging packets

with start of message (SOM) and end of message (EOM) flags. Typically, the cryptographic

application will prepend a cryptgraphic preamble to the first encrypted packet.

Networking waveforms would typically use packet mode. With packet mode operation, each

packet is its own message with an implied SOM and EOM. Many packet based cryptographic

applications will include an initialization vector (IV) with each packet.

3.12.1 TransformStream Operation

Clients use the TransformStream() operation to transform (i.e. encrypt or decrypt depending on

the source and destination) messages, as part of a streaming protocol as described in 3.12, where

each message consists of one or more packets delimited with SOM and EOM flags. Clients must

identify the first packet of a message by asserting the som parameter and the last packet of a

message by asserting the eom parameter. If a message consists of a single packet, then clients

should assert both the som and eom parameters. After the security subsystem transforms the

packet, it will be pushed to the consumer interface of the other endpoint of the channel via

PushStream() (see 3.13.1).

The packet size cannot exceed the maximum packet size, returned by GetMaxPacketSize().

When TransformStream() returns false, this constitutes a flow pause state. The client should not

send more packets until SpaceAvailable() returns true, or until it receives a flow resume event

through the IRSS::Infosec::ControlSignals interface.

3.12.1.1 Synopsis

boolean TransformStream(in IRSS::ChannelId channel, in boolean som, in boolean eom, in

Packet streamPacket) raises(IRSS::InvalidChannelId, MaxPacketSizeExceeded, BadSomFlag,

IRSS::ConfigurationInactive);

3.12.1.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the cryptographic channel

to use.

som boolean TRUE=The packet is the first packet of a

message.

FALSE=The packet is not the first packet of

a message

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 62

All Rights Reserved

eom boolean TRUE=The packet is the last packet of a

message.

FALSE=The packet is not the last packet of

a message

streamPacket Packet The packet to transform

3.12.1.3 Return Value

Type Description Valid Range

boolean Indicates whether there is any

remaining available space in the

designated channel.

TRUE=There is available space and the client can

continue pushing packets.

FALSE=There is not available space (i.e.flow

paused) and the client should discontinue pushing

packets until space becomes available.

3.12.1.4 Originator

Waveform clients

3.12.1.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid channel

identifier or is not the identifier for a cryptographic

channel.

MaxPacketSizeExceeded The packet exceeded the maximum packet size

BadSomFlag A packet tagged as SOM was received in the middle

of a previously started message, or a packet to start a

message was received without the SOM flag set

IRSS::ConfigurationInactive An attempt was made to use a cryptographic channel

that does not have an active configuration

3.12.2 TransformPackets Operation

Clients use the TransformPackets() operation to transform (i.e. encrypt or decrypt depending on

the source and destination) packets, as part of a networking protocol as described in 3.12, where

each packet is considered a self-contained message with implied SOM and EOM flags. For

efficiency reasons, this operation takes in a payload consisting of a sequence of packets, allowing

for reduced overhead. After the security subsystem transforms the packets, they will be pushed

to the consumer interface of the other endpoint of the channel via PushPackets() (see 3.13.2).

No packet in the sequence can exceed the maximum packet size, returned by

GetMaxPacketSize().

The total size of all the packets cannot exceed the maximum payload size returned by

GetMaxPayloadSize().

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 63

All Rights Reserved

When TransformPackets() returns false, this constitutes a flow pause state. The client should not

send more packets until SpaceAvailable() returns true, or it receives a flow resume event through

the IRSS::Infosec::ControlSignals interface.

3.12.2.1 Synopsis

boolean TransformPackets(in IRSS::ChannelId channel, in PacketSequence payload) raises(

IRSS::InvalidChannelId, MaxPayloadSizeExceeded, MaxPacketSizeExceeded,

IRSS::ConfigurationInactive);

3.12.2.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the

cryptographic channel to use.

payload PacketSequence A sequence of one or more

packets to be transformed.

3.12.2.3 Return Value

Type Description Valid Range

boolean Indicates whether there is any

remaining available space in the

designated channel.

TRUE=There is available space and the client can

continue pushing payloads.

FALSE=There is not available space (i.e.flow

paused) and the client should discontinue pushing

payloads until space becomes available.

3.12.2.4 Originator

Waveform clients

3.12.2.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid

channel identifier or is not a cryptographic channel

identifier

MaxPacketSizeExceeded One or more packets in the payload exceeded the

maximum packet size

MaxPayloadSizeExceeded The entire payload exceeded the maximum payload

size

IRSS::ConfigurationInactive An attempt was made to use a cryptographic

channel that does not have an active configuration

3.12.3 GetMaxPayloadSize Operation

This operation returns the maximum payload in octets that the channel can accept.

This applies to the sum of the packets pushed to the channel via a TransformPacket() call (see

3.12.2).

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 64

All Rights Reserved

3.12.3.1 Synopsis

unsigned long GetMaxPayloadSize(in IRSS::ChannelId channel) raises(

IRSS::InvalidChannelId);

3.12.3.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the cryptographic channel

to query

3.12.3.3 Return Value

Type Description Valid Range

unsigned long Maximum payload size in octets. Channel dependent

3.12.3.4 Originator

Waveform clients

3.12.3.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid

channel identifier or is not a cryptographic channel

identifier.

3.12.4 GetMaxPacketSize Operation

This operation returns the maximum packet size the IRSS can accept in octets.

Clients should not pass packets to the IRSS, via TransformStream() (see 3.12.1) or

TransformPacket() (see 3.12.2), that are larger than this size.

3.12.4.1 Synopsis

unsigned long GetMaxPacketSize(in IRSS::ChannelId channel) raises(IRSS::InvalidChannelId

);

3.12.4.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the cryptographic channel

to query

3.12.4.3 Return Value

Type Description Valid Range

unsigned long Maximum packet size in octets. Channel dependent

3.12.4.4 Originator

Waveform clients

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 65

All Rights Reserved

3.12.4.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid

channel identifier or is not a cryptographic channel

identifier.

3.12.5 SpaceAvailable Operation

This operation returns a boolean indicating whether there is any space available for a transform

request.

If a false is returned, the client should not push another packet until it receives a flow resume

event through the IRSS::Infosec::ControlSignals interface or a subsequent call to

SpaceAvailable() returns true.

3.12.5.1 Synopsis

boolean SpaceAvailable(in IRSS::ChannelId channel) raises(IRSS::InvalidChannelId);

3.12.5.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the cryptographic channel

to query

3.12.5.3 Return Value

Type Description Valid Range

boolean Indicates whether there is any

remaining available space in the

designated channel.

TRUE=There is available space and the client can

continue pushing packets/payloads.

FALSE=There is not available space (i.e.flow

paused) and the client should discontinue pushing

packets/payloads until space becomes available.

3.12.5.4 Originator

Waveform clients

3.12.5.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid

channel identifier or is not a cryptographic channel

identifier.

3.13 IRSS::Infosec::CryptographicConsumer

Waveform clients provide the IRSS::CrytographicConsumer interface. The IRSS uses this

interface to push data to a client after a transform operation successfully completes. Flow

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 66

All Rights Reserved

control is not employed in the interface to the client. Any buffering needed as part of an overall

system flow control protocol must be implemented within the client.

3.13.1 PushStream Operation

This operation pushes one packet of a message to the client, after a successful transform

operation completes as part of a streaming protocol as described in 3.12, where each message

consists of one or more packets delimited with SOM and EOM flags. The IRSS will identify the

first packet of a message by asserting the som parameter and the last packet of a message by

asserting the eom parameter. If a message consists of a single packet, then the IRSS will assert

both the som and eom parameters.

3.13.1.1 Synopsis

void PushStream(in IRSS::ChannelId channel, in boolean som, in boolean eom, in Packet

streamPacket);

3.13.1.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the cryptographic channel

used to transform the packet.

som boolean TRUE=The packet is the first packet of a

message.

FALSE=The packet is not the first packet of

a message

eom boolean TRUE=The packet is the last packet of a

message.

FALSE=The packet is not the last packet of

a message

streamPacket Packet The transformed packet

3.13.1.3 Return Value

None

3.13.1.4 Originator

IRSS

3.13.1.5 Exceptions

None

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 67

All Rights Reserved

3.13.2 PushPackets Operation

This operation pushes a sequence of one or more packets of data to the client, after a successful

transform operation completes as part of a networking protocol as described in 3.12, where each

packet is considered a self-contained message with implied SOM and EOM flags.

3.13.2.1 Synopsis

void PushPackets(in IRSS::ChannelId channel, in PacketSequence payload);

3.13.2.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the cryptographic

channel used to transform the packet(s).

payload PacketSequence The sequence of transformed packets

3.13.2.3 Return Value

None

3.13.2.4 Originator

IRSS

3.13.2.5 Exceptions

None

3.14 IRSS::Infosec::ControlSignals

Flow control may be employed in the IRSS::Infosec::CryptographicChannel interface to the

IRSS.

A client can be flow paused after pushing a packet/payload to the

IRSS::Infosec::CryptographicChannel if that packet/payload fills the queues managed by the

IRSS. The ControlSignals interface is the mechanism that the IRSS uses to notify a client that

flow can once again resume.

3.14.1 FlowResume Operation

The IRSS uses this operation to signal to the client that flow can resume.

3.14.1.1 Synopsis

oneway void FlowResume(in IRSS::ChannelId channel);

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 68

All Rights Reserved

3.14.1.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The ID of the cryptographic channel where

flow can be resumed

3.14.1.3 Return Value

None

3.14.1.4 Originator

IRSS

3.14.1.5 Exceptions

None

3.15 IRSS::Infosec::TransecChannel

3.15.1 EncryptTransec Operation

This operation encrypts the supplied payload using the activated configuration for the supplied

channel.

The seed and its related parameter, numSeedBits, are optional. If not provided (i.e. numSeedBits

is zero), the cryptographic subsystem continues the previously seeded encryption.

The payload cannot exceed the maximum payload size returned by GetMaxPayloadSize().

3.15.1.1 Synopsis

void EncryptTransec(in IRSS::ChannelId channel, in CF::OctetSequence seed, in unsigned long

numSeedBits, inout CF::OctetSequence payload) raises(IRSS::InvalidChannelId,

BadTransecSeed, IRSS::ConfigurationInactive, MaxPayloadSizeExceeded);

3.15.1.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The ID of the TRANSEC channel where

encryption is being requested

seed CF::OctetSequence Optional parameter used to initialize the

encryption algorithm.

numSeedBits unsigned long Length of seed in bits. A seed is not

necessarily an integer multiple of 8 bits

payload CF::OctetSequence Data to be encrypted

3.15.1.3 Return Value

None

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 69

All Rights Reserved

3.15.1.4 Originator

Waveform clients

3.15.1.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid

channel identifier or is not a TRANSEC channel

identifier

BadTransecSeed The seed provided does not contain at least

numSeedBits of seed data or does not contain the

number of seed bits required by the algorithm

IRSS::ConfigurationInactive An attempt was made to use a TRANSEC channel

that does not have an active configuration

MaxPayloadSizeExceeded The payload exceeded the maximum payload size

3.15.2 DecryptTransec Operation

This operation decrypts the supplied payload using the active configuration for the supplied

channel.

The seed and its related parameter, numSeedBits, are optional. If not provided (i.e. numSeedBits

is zero), the cryptographic subsystem continues the previously seeded decryption.

The payload cannot exceed the maximum payload size returned by GetMaxPayloadSize().

3.15.2.1 Synopsis

void DecryptTransec(in IRSS::ChannelId channel, in CF::OctetSequence seed, in unsigned long

numSeedBits, inout CF::OctetSequence payload) raises(IRSS::InvalidChannelId,

BadTransecSeed, IRSS::ConfigurationInactive, MaxPayloadSizeExceeded);

3.15.2.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The ID of the TRANSEC channel where

decryption is being requested

seed CF::OctetSequence Optional parameter used to initialize the

decryption algorithm.

numSeedBits unsigned long Length of seed in bits. A seed is not

necessarily an integer multiple of 8 bits

payload CF::OctetSequence Data to be decrypted

3.15.2.3 Return Value

None

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 70

All Rights Reserved

3.15.2.4 Originator

Waveform clients

3.15.2.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid

channel identifier or is not a TRANSEC channel

identifier

BadTransecSeed The seed provided does not contain at least

numSeedBits of seed data or does not contain the

number of seed bits required by the algorithm

IRSS::ConfigurationInactive An attempt was made to use a TRANSEC channel

that does not have an active configuration

MaxPayloadSizeExceeded The payload exceeded the maximum payload size.

3.15.3 GenerateKeyStream Operation

This operation provides TRANSEC cover to a waveform client’s transmission by having the

security subsystem generate a TRANSEC keystream. The waveform applies the keystream to

its transmission information directly.

The seed and its related parameter, numSeedBits, are optional. If not provided (i.e. numSeedBits

is zero), the cryptographic subsystem continues the previously seeded keystream.

3.15.3.1 Synopsis

CF::OctetSequence GenerateKeyStream(in IRSS::ChannelId channel, in CF::OctetSequence

seed, in unsigned long numSeedBits, in unsigned long numKeyStreamBits) raises(

IRSS::InvalidChannelId, BadTransecSeed, IRSS::ConfigurationInactive);

3.15.3.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The ID of the TRANSEC channel from

which the TRANSEC keystream is being

requested

seed CF::OctetSequence Optional parameter used to initialize the

keystream algorithm

numSeedBits unsigned long Length of seed in bits. A seed is not

necessarily an integer multiple of 8 bits

numKeyStreamBits unsigned long Length of keystream being requested in bits

3.15.3.3 Return Value

Type Description Valid Range

CF::OctetSequence The generated TRANSEC

keystream

Algorithm dependent

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 71

All Rights Reserved

3.15.3.4 Originator

Waveform clients

3.15.3.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid

channel identifier or is not a TRANSEC channel

identifier.

BadTransecSeed The seed provided does not contain at least

numSeedBits of seed data or does not contain the

number of seed bits required by the algorithm.

IRSS::ConfigurationInactive An attempt was made to use a TRANSEC channel

that does not have an active configuration

3.15.4 GetMaxPayloadSize Operation

This operation returns the channel’s maximum payload size in octets. The payloads used in the

EncryptTransec() (see 3.15.1) and DecryptTransec() (see 3.15.2) operations should not exceed

this size.

3.15.4.1 Synopsis

unsigned long GetMaxPayloadSize(in IRSS::ChannelId channel) raises(

IRSS::InvalidChannelId);

3.15.4.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The identifier of the TRANSEC channel to

query

3.15.4.3 Return Value

Type Description Valid Range

unsigned long Maximum payload size in octets Channel dependent

3.15.4.4 Originator

Waveform clients

3.15.4.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid

channel identifier or is not a TRANSEC channel

identifier

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 72

All Rights Reserved

3.16 IRSS::Protocol::Channel

Waveform clients use the IRSS::Protocol::Channel interface to push protocol messages to the

IRSS.

Each protocol’s specific message details are provided in external extension documents. Both the

waveform and IRSS need to implement the protocol per the protocol definition.

3.16.1 PushMessage Operation

This operation pushes a message to the designated channel.

The maximum message size for a protocol is specified in the protocol definition.

3.16.1.1 Synopsis

void PushMessage(in IRSS::ChannelId channel, in CF::OctetSequence message) raises(

IRSS::InvalidChannelId, MaxMessageSizeExceeded, InvalidMessage, UnrecognizedMessage);

3.16.1.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The ID of the protocol channel to push the

message to.

message CF::OctetSequence The message to push

3.16.1.3 Return Value

None

3.16.1.4 Originator

Waveform clients

3.16.1.5 Exceptions

Exception Description

IRSS::InvalidChannelId The channel identifier specified is not a valid channel

identifier or is not a protocol channel identifier

MaxMessageSizeExceeded The message pushed exceeds the maximum message

size defined by the protocol.

InvalidMessage The waveform client passed a message that is not

valid for this protocol or is not valid at this time

UnrecognizedMessage The waveform client passed a message that is not

recognized by the IRSS

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 73

All Rights Reserved

3.17 IRSS::Protocol::Consumer

Waveform clients provide the IRSS::Protocol::Consumer interface. The IRSS uses this interface

to push protocol messages to the client.

3.17.1 PushMessage Operation

This operation pushes protocol messages to waveform clients.

3.17.1.1 Synopsis

void PushMessage(in IRSS::ChannelId channel, in CF::OctetSequence message);

3.17.1.2 Parameters

Parameter Name Type Description

channel IRSS::ChannelId The ID of the protocol channel used to push

the message

message CF::OctetSequence The protocol message being pushed

3.17.1.3 Return Value

None

3.17.1.4 Originator

IRSS.

3.17.1.5 Exceptions

None

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 74

All Rights Reserved

4 IDL

The following idl files were generated by MagicDraw version 17 and compiled with OIS

OrbExpress idl2cpp Version 3.0.0 (FC04).

4.1 Irss.idl

/**

* IRSS.idl

*

* Comments have been omitted from this file.

* Please refer to the IRSS API Specification for details.

*

* Copyright:

* This document has been prepared by the members of the International Security

* Services API Task Group to assist The Software Defined Radio Forum Inc. (or

* its successors or assigns, hereafter “the Forum”). It may be amended or

* withdrawn at a later time and it is not binding on any member of the Forum

* or of the International Security Services API Task Group. Contributors to

* this document that have submitted copyrighted materials (the Submission) to

* the Forum for use in this document retain copyright ownership of their

* original work, while at the same time granting the Forum a non-exclusive,

* irrevocable, worldwide, perpetual, royalty-free license under the Submitter’s

* copyrights in the Submission to reproduce, distribute, publish, display,

* perform, and create derivative works of the Submission based on that original

* work for the purpose of developing this document under the Forum's own

* copyright. Permission is granted to the Forum’s participants to copy any

* portion of this document for legitimate purposes of the Forum. Copying for

* monetary gain or for other non-Forum related purposes is prohibited.

*

* Permission is granted to the Forum’s participants to copy any portion of this

* document for legitimate purposes of the Forum.

*

* (c) The Software Defined Radio Forum Inc. doing business as

* The Wireless Innovation Forum

* First fixed in 2011, all rights reserved.

*/

#ifndef _IRSS_idl

#define _IRSS_idl

module IRSS

{

 typedef unsigned long ChannelId;

 exception InvalidChannelId

 {

 };

 exception ConfigurationInactive

 {

 };

};

#endif

4.2 Bypass.idl

/**

* Bypass.idl

*

* Comments have been omitted from this file.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 75

All Rights Reserved

* Please refer to the IRSS API Specification for details.

*

* Copyright:

* This document has been prepared by the members of the International Security

* Services API Task Group to assist The Software Defined Radio Forum Inc. (or

* its successors or assigns, hereafter “the Forum”). It may be amended or

* withdrawn at a later time and it is not binding on any member of the Forum

* or of the International Security Services API Task Group. Contributors to

* this document that have submitted copyrighted materials (the Submission) to

* the Forum for use in this document retain copyright ownership of their

* original work, while at the same time granting the Forum a non-exclusive,

* irrevocable, worldwide, perpetual, royalty-free license under the Submitter’s

* copyrights in the Submission to reproduce, distribute, publish, display,

* perform, and create derivative works of the Submission based on that original

* work for the purpose of developing this document under the Forum's own

* copyright. Permission is granted to the Forum’s participants to copy any

* portion of this document for legitimate purposes of the Forum. Copying for

* monetary gain or for other non-Forum related purposes is prohibited.

*

* Permission is granted to the Forum’s participants to copy any portion of this

* document for legitimate purposes of the Forum

*

* (c) The Software Defined Radio Forum Inc. doing business as

* The Wireless Innovation Forum

* First fixed in 2011, all rights reserved.

*/

#ifndef _Bypass_idl

#define _Bypass_idl

#include "CF.idl"

#include "IRSS.idl"

module IRSS

{

 module Bypass

 {

 exception MaxBypassSizeExceeded

 {

 };

 interface Consumer

 {

 void PushBypass(in CF::OctetSequence bypass);

 };

 exception PolicyViolation

 {

 };

 interface Channel

 {

 void PushBypass(in IRSS::ChannelId channel,

 in CF::OctetSequence bypass)

 raises(IRSS::InvalidChannelId,

 MaxBypassSizeExceeded,

 PolicyViolation);

 unsigned long GetMaxBypassSize(in IRSS::ChannelId channel)

 raises(IRSS::InvalidChannelId);

 };

 };

};

#endif

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 76

All Rights Reserved

4.3 Control.idl
/**

* Control.idl

*

* Comments have been omitted from this file.

* Please refer to the IRSS API Specification for details.

*

* Copyright:

* This document has been prepared by the members of the International Security

* Services API Task Group to assist The Software Defined Radio Forum Inc. (or

* its successors or assigns, hereafter “the Forum”). It may be amended or

* withdrawn at a later time and it is not binding on any member of the Forum

* or of the International Security Services API Task Group. Contributors to

* this document that have submitted copyrighted materials (the Submission) to

* the Forum for use in this document retain copyright ownership of their

* original work, while at the same time granting the Forum a non-exclusive,

* irrevocable, worldwide, perpetual, royalty-free license under the Submitter’s

* copyrights in the Submission to reproduce, distribute, publish, display,

* perform, and create derivative works of the Submission based on that original

* work for the purpose of developing this document under the Forum's own

* copyright. Permission is granted to the Forum’s participants to copy any

* portion of this document for legitimate purposes of the Forum. Copying for

* monetary gain or for other non-Forum related purposes is prohibited.

*

* Permission is granted to the Forum’s participants to copy any portion of this

* document for legitimate purposes of the Forum

*

* (c) The Software Defined Radio Forum Inc. doing business as

* The Wireless Innovation Forum

* First fixed in 2011, all rights reserved.

*/

#ifndef _Control_idl

#define _Control_idl

#include "CF.idl"

#include "IRSS.idl"

module IRSS

{

 module Control

 {

 typedef unsigned long EndpointId;

 const IRSS::Control::EndpointId UNUSED_ENDPOINT_ID = 0xFFFFFFFF ;

 enum Duplexity

 {

 SIMPLEX_RX,

 SIMPLEX_TX,

 FULL_DUPLEX,

 HALF_DUPLEX

 };

 typedef unsigned long KeyId;

 typedef unsigned long CryptoModuleId;

 exception InvalidCertificateId

 {

 };

 exception ChannelCreationError

 {

 string reason;

 };

 exception ConfigurationActivationError

 {

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 77

All Rights Reserved

 string reason;

 };

 exception InvalidAlgorithmId

 {

 };

 exception InvalidConfiguration

 {

 };

 exception InvalidConfigurationId

 {

 };

 exception InvalidCryptoApplicationId

 {

 };

 exception InvalidEndpointId

 {

 };

 exception InvalidEndpointPair

 {

 };

 exception InvalidKey

 {

 };

 exception InvalidKeyId

 {

 };

 exception InvalidKeyUpdateAlgorithmId

 {

 };

 exception InvalidModuleId

 {

 };

 exception KeyUpdateError

 {

 string reason;

 };

 exception UnrecognizedCertificate

 {

 };

 typedef unsigned long CertificateId;

 typedef unsigned long ConfigurationId;

 typedef unsigned long CryptoApplicationId;

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 78

All Rights Reserved

 typedef unsigned long HashAlgorithmId;

 typedef unsigned long KeyUpdateAlgorithmId;

 typedef unsigned long MacAlgorithmId;

 typedef unsigned long SignatureAlgorithmId;

 typedef sequence<CertificateId> CertificateIdSequence;

 typedef sequence<CryptoApplicationId> CryptoApplicationIdSequence;

 struct CryptographicConfiguration

 {

 IRSS::Control::CryptoApplicationId cryptoApplication;

 IRSS::Control::KeyId tek;

 IRSS::Control::Duplexity duplexity;

 CF::OctetSequence other;

 };

 struct TransecConfiguration

 {

 IRSS::Control::CryptoApplicationId cryptoApplication;

 IRSS::Control::KeyId tsk;

 CF::OctetSequence other;

 };

 interface CertificateMgmt

 {

 CF::OctetSequence RetrieveCertificate(in CertificateId certId)

 raises(InvalidCertificateId);

 CertificateIdSequence GetCertificateIds();

 boolean IsCertifcateValid(in CF::OctetSequence certificate)

 raises(UnrecognizedCertificate);

 };

 interface KeyMgmt

 {

 void UpdateKey(in KeyId updateKeyId)

 raises(InvalidKeyId, KeyUpdateError);

 void UpdateKeyWithAlgorithm(

 in KeyId updateKeyId,

 in KeyUpdateAlgorithmId algorithm)

 raises(

 InvalidKeyId,

 KeyUpdateError,

 InvalidKeyUpdateAlgorithmId);

 unsigned short GetUpdateCount(in KeyId updateCountKeyId)

 raises(InvalidKeyId);

 void ZeroizeKey(in KeyId zeroizeKeyId) raises(InvalidKeyId);

 };

 interface ChannelMgmt

 {

 IRSS::ChannelId CreateCryptographicChannel(

 in CryptoModuleId cm,

 in EndpointId ptEndpoint,

 in EndpointId ctEndpoint,

 in CryptoApplicationIdSequence cryptoApps,

 in Duplexity channelDuplexity)

 raises(InvalidModuleId,

 InvalidEndpointId,

 InvalidEndpointPair,

 InvalidCryptoApplicationId,

 ChannelCreationError);

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 79

All Rights Reserved

 IRSS::ChannelId CreateTransecChannel(

 in CryptoModuleId cm,

 in EndpointId endpoint,

 in CryptoApplicationIdSequence cryptoApps,

 in Duplexity channelDuplexity)

 raises(InvalidModuleId,

 InvalidCryptoApplicationId,

 ChannelCreationError,

 InvalidEndpointId);

 IRSS::ChannelId CreateBypassChannel(

 in CryptoModuleId cm,

 in EndpointId sourceEndpoint,

 in EndpointId destinationEndpoint)

 raises(ChannelCreationError,

 InvalidModuleId,

 InvalidEndpointId,

 InvalidEndpointPair);

 IRSS::ChannelId CreateHashChannel(

 in CryptoModuleId cm,

 in EndpointId inputEndpoint,

 in HashAlgorithmId hashAlogrithm)

 raises(ChannelCreationError,

 InvalidModuleId,

 InvalidEndpointId,

 InvalidAlgorithmId);

 IRSS::ChannelId CreateMacChannel(

 in CryptoModuleId cm,

 in EndpointId inputEndpoint,

 in MacAlgorithmId macAlogrithmId,

 in KeyId macKeyId)

 raises(InvalidKeyId,

 ChannelCreationError,

 InvalidAlgorithmId,

 InvalidModuleId,

 InvalidEndpointId);

 IRSS::ChannelId CreateSignatureChannel(

 in CryptoModuleId cm,

 in EndpointId inputEndpoint,

 in SignatureAlgorithmId algorithmId,

 in CertificateId certId)

 raises(InvalidCertificateId,

 ChannelCreationError,

 InvalidModuleId,

 InvalidEndpointId,

 InvalidAlgorithmId);

 IRSS::ChannelId CreateSignatureVerificationChannel(

 in CryptoModuleId cm,

 in EndpointId inputEndpoint,

 in SignatureAlgorithmId algorithmId,

 in CF::OctetSequence publicKey)

 raises(ChannelCreationError,

 InvalidModuleId,

 InvalidEndpointId,

 InvalidKey,

 InvalidAlgorithmId);

 IRSS::ChannelId CreateProtocolChannel(

 in CryptoModuleId cm,

 in EndpointId ptEndpoint,

 in EndpointId ctEndpoint,

 in CryptoApplicationId protocolApplicationlId)

 raises(ChannelCreationError,

 InvalidModuleId,

 InvalidEndpointId,

 InvalidCryptoApplicationId,

 InvalidEndpointPair);

 void DestroyChannel(

 in IRSS::ChannelId channel)

 raises(IRSS::InvalidChannelId);

 ConfigurationId AddCryptographicConfiguration(

 in IRSS::ChannelId channel,

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 80

All Rights Reserved

 in CryptographicConfiguration configuration)

 raises(IRSS::InvalidChannelId,

 InvalidConfiguration);

 ConfigurationId AddTransecConfiguration(

 in IRSS::ChannelId channel,

 in TransecConfiguration configuration)

 raises(IRSS::InvalidChannelId,

 InvalidConfiguration);

 void RemoveConfiguration(

 in ConfigurationId channelConfigId)

 raises(InvalidConfigurationId);

 void ActivateConfiguration(

 in ConfigurationId channelConfigId,

 in CF::OctetSequence activationData)

 raises(InvalidConfigurationId,

 ConfigurationActivationError);

 void DeactivateConfiguration(

 in ConfigurationId channelConfigId)

 raises(IRSS::ConfigurationInactive,

 InvalidConfigurationId);

 };

 };

};

#endif

4.4 IandA.idl
/**

* IandA.idl

*

* Comments have been omitted from this file.

* Please refer to the IRSS API Specification for details.

*

* Copyright:

* This document has been prepared by the members of the International Security

* Services API Task Group to assist The Software Defined Radio Forum Inc. (or

* its successors or assigns, hereafter “the Forum”). It may be amended or

* withdrawn at a later time and it is not binding on any member of the Forum

* or of the International Security Services API Task Group. Contributors to

* this document that have submitted copyrighted materials (the Submission) to

* the Forum for use in this document retain copyright ownership of their

* original work, while at the same time granting the Forum a non-exclusive,

* irrevocable, worldwide, perpetual, royalty-free license under the Submitter’s

* copyrights in the Submission to reproduce, distribute, publish, display,

* perform, and create derivative works of the Submission based on that original

* work for the purpose of developing this document under the Forum's own

* copyright. Permission is granted to the Forum’s participants to copy any

* portion of this document for legitimate purposes of the Forum. Copying for

* monetary gain or for other non-Forum related purposes is prohibited.

*

* Permission is granted to the Forum’s participants to copy any portion of this

* document for legitimate purposes of the Forum

*

* (c) The Software Defined Radio Forum Inc. doing business as

* The Wireless Innovation Forum

* First fixed in 2011, all rights reserved.

*/

#ifndef _IandA_idl

#define _IandA_idl

#include "CF.idl"

#include "IRSS.idl"

module IRSS

{

 module IandA

 {

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 81

All Rights Reserved

 exception InvalidMac

 {

 };

 exception InvalidSignature

 {

 };

 exception InvalidState

 {

 };

 exception MaxDataSizeExceeded

 {

 };

 interface Random

 {

 CF::OctetSequence GetPseudoRandom(

 in unsigned short seed,

 in unsigned short numBytes);

 CF::OctetSequence GetRandom(

 in unsigned short numBytes);

 };

 abstract interface Channel

 {

 void PushData(

 in IRSS::ChannelId channel,

 in CF::OctetSequence data)

 raises(IRSS::InvalidChannelId,

 MaxDataSizeExceeded);

 unsigned long GetMaxDataSize(in IRSS::ChannelId channel)

 raises(IRSS::InvalidChannelId);

 void Reset(in IRSS::ChannelId channel)

 raises(IRSS::InvalidChannelId);

 };

 interface HashChannel : Channel

 {

 CF::OctetSequence GetHash(in IRSS::ChannelId channel)

 raises(IRSS::InvalidChannelId, InvalidState);

 };

 interface SignatureChannel : Channel

 {

 CF::OctetSequence GetSignature(in IRSS::ChannelId channel)

 raises(IRSS::InvalidChannelId, InvalidState);

 };

 interface MacChannel : Channel

 {

 CF::OctetSequence GetMac(in IRSS::ChannelId channel)

 raises(IRSS::InvalidChannelId, InvalidState);

 boolean IsMacValid(

 in IRSS::ChannelId channel,

 in CF::OctetSequence mac)

 raises(IRSS::InvalidChannelId, InvalidState, InvalidMac);

 };

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 82

All Rights Reserved

 interface SignatureVerificationChannel : Channel

 {

 boolean IsSignatureValid(

 in IRSS::ChannelId channel,

 in CF::OctetSequence signature)

 raises(IRSS::InvalidChannelId,

 InvalidState,

 InvalidSignature);

 };

 };

};

#endif

4.5 Infosec.idl
/**

* Infosec.idl

*

* Comments have been omitted from this file.

* Please refer to the IRSS API Specification for details.

*

* Copyright:

* This document has been prepared by the members of the International Security

* Services API Task Group to assist The Software Defined Radio Forum Inc. (or

* its successors or assigns, hereafter “the Forum”). It may be amended or

* withdrawn at a later time and it is not binding on any member of the Forum

* or of the International Security Services API Task Group. Contributors to

* this document that have submitted copyrighted materials (the Submission) to

* the Forum for use in this document retain copyright ownership of their

* original work, while at the same time granting the Forum a non-exclusive,

* irrevocable, worldwide, perpetual, royalty-free license under the Submitter’s

* copyrights in the Submission to reproduce, distribute, publish, display,

* perform, and create derivative works of the Submission based on that original

* work for the purpose of developing this document under the Forum's own

* copyright. Permission is granted to the Forum’s participants to copy any

* portion of this document for legitimate purposes of the Forum. Copying for

* monetary gain or for other non-Forum related purposes is prohibited.

*

* Permission is granted to the Forum’s participants to copy any portion of this

* document for legitimate purposes of the Forum

*

* (c) The Software Defined Radio Forum Inc. doing business as

* The Wireless Innovation Forum

* First fixed in 2011, all rights reserved.

*/

#ifndef _Infosec_idl

#define _Infosec_idl

#include "CF.idl"

#include "IRSS.idl"

module IRSS

{

 module Infosec

 {

 exception MaxPayloadSizeExceeded

 {

 };

 exception MaxPacketSizeExceeded

 {

 };

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 83

All Rights Reserved

 exception BadSomFlag

 {

 };

 exception BadTransecSeed

 {

 };

 struct Packet

 {

 CF::OctetSequence payload;

 CF::OctetSequence bypass;

 };

 interface ControlSignals

 {

 oneway void FlowResume(in IRSS::ChannelId channel);

 };

 typedef sequence<Packet> PacketSequence;

 interface CryptographicConsumer

 {

 void PushStream(

 in IRSS::ChannelId channel,

 in boolean som,

 in boolean eom,

 in Packet streamPacket);

 void PushPackets(

 in IRSS::ChannelId channel,

 in PacketSequence payload);

 };

 interface TransecChannel

 {

 void EncryptTransec(

 in IRSS::ChannelId channel,

 in CF::OctetSequence seed,

 in unsigned long numSeedBits,

 inout CF::OctetSequence payload)

 raises(IRSS::InvalidChannelId,

 BadTransecSeed,

 IRSS::ConfigurationInactive,

 MaxPayloadSizeExceeded);

 void DecryptTransec(

 in IRSS::ChannelId channel,

 in CF::OctetSequence seed,

 in unsigned long numSeedBits,

 inout CF::OctetSequence payload)

 raises(IRSS::InvalidChannelId,

 BadTransecSeed,

 IRSS::ConfigurationInactive,

 MaxPayloadSizeExceeded);

 CF::OctetSequence GenerateKeyStream(

 in IRSS::ChannelId channel,

 in CF::OctetSequence seed,

 in unsigned long numSeedBits,

 in unsigned long numKeyStreamBits)

 raises(IRSS::InvalidChannelId,

 BadTransecSeed,

 IRSS::ConfigurationInactive);

 unsigned long GetMaxPayloadSize(in IRSS::ChannelId channel)

 raises(IRSS::InvalidChannelId);

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 84

All Rights Reserved

 };

 interface CryptographicChannel

 {

 boolean TransformStream(

 in IRSS::ChannelId channel,

 in boolean som,

 in boolean eom,

 in Packet streamPacket)

 raises(IRSS::InvalidChannelId,

 MaxPacketSizeExceeded,

 BadSomFlag,

 IRSS::ConfigurationInactive);

 boolean TransformPackets(

 in IRSS::ChannelId channel,

 in PacketSequence payload)

 raises(IRSS::InvalidChannelId,

 MaxPayloadSizeExceeded,

 MaxPacketSizeExceeded,

 IRSS::ConfigurationInactive);

 unsigned long GetMaxPayloadSize(in IRSS::ChannelId channel)

 raises(IRSS::InvalidChannelId);

 unsigned long GetMaxPacketSize(in IRSS::ChannelId channel)

 raises(IRSS::InvalidChannelId);

 boolean SpaceAvailable(in IRSS::ChannelId channel)

 raises(IRSS::InvalidChannelId);

 };

 };

};

#endif

4.6 Protocol.idl
/**

* Protocol.idl

*

* Comments have been omitted from this file.

* Please refer to the IRSS API Specification for details.

*

* Copyright:

* This document has been prepared by the members of the International Security

* Services API Task Group to assist The Software Defined Radio Forum Inc. (or

* its successors or assigns, hereafter “the Forum”). It may be amended or

* withdrawn at a later time and it is not binding on any member of the Forum

* or of the International Security Services API Task Group. Contributors to

* this document that have submitted copyrighted materials (the Submission) to

* the Forum for use in this document retain copyright ownership of their

* original work, while at the same time granting the Forum a non-exclusive,

* irrevocable, worldwide, perpetual, royalty-free license under the Submitter’s

* copyrights in the Submission to reproduce, distribute, publish, display,

* perform, and create derivative works of the Submission based on that original

* work for the purpose of developing this document under the Forum's own

* copyright. Permission is granted to the Forum’s participants to copy any

* portion of this document for legitimate purposes of the Forum. Copying for

* monetary gain or for other non-Forum related purposes is prohibited.

*

* Permission is granted to the Forum’s participants to copy any portion of this

* document for legitimate purposes of the Forum

*

* (c) The Software Defined Radio Forum Inc. doing business as

* The Wireless Innovation Forum

* First fixed in 2011, all rights reserved.

*/

#ifndef _Protocol_idl

#define _Protocol_idl

#include "CF.idl"

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 85

All Rights Reserved

#include "IRSS.idl"

module IRSS

{

 module Protocol

 {

 interface Consumer

 {

 void PushMessage(

 in IRSS::ChannelId channel,

 in CF::OctetSequence message);

 };

 exception InvalidMessage

 {

 };

 exception MaxMessageSizeExceeded

 {

 };

 exception UnrecognizedMessage

 {

 };

 interface Channel

 {

 void PushMessage(

 in IRSS::ChannelId channel,

 in CF::OctetSequence message)

 raises(IRSS::InvalidChannelId,

 MaxMessageSizeExceeded,

 InvalidMessage,

 UnrecognizedMessage);

 };

 };

};

#endif

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 86

All Rights Reserved

5 UML

In this document, most of the descriptive UML has been placed in section 2.3, and typical port

structures of IRSS components are shown in section 1.2. The subsections below detail non-

interface specifics that support the main interfaces.

5.1 Data Types

5.1.1 IRSS::ChannelId

The ChannelId identifies a communications channel for exchanging information between

waveform components and the IRSS.

typedef unsigned long ChannelId;

5.1.2 IRSS::Control::ConfigurationId

The ConfigurationId identifies a channel configuration (Cryptographic or TRANSEC).

typedef unsigned long ConfigurationId;

5.1.3 IRSS::Control::CryptoApplicationId

The CryptoApplicationId identifies a cryptographic application (e.g. AES)

typedef unsigned long CryptoApplicationId;

5.1.4 IRSS::Control::KeyId

The KeyId identifies an individual key within the security subystem.

typedef unsigned long KeyId;

5.1.5 IRSS::Control::KeyUpdateAlgorithmId

The KeyUpdateAlgorithmId identifies an algorithm to be used when a key update is requested.

typedef unsigned long KeyUpdateAlgorithmId;

5.1.6 IRSS::Control::EndpointId

The EndpointId identifies an access point into a crypto module and is implementation defined.

Examples of types of endpoints include: physical hardware interfaces into a crypto module, IRSS

API instance, and IP address.

typedef unsigned long EndpointId;

5.1.7 IRSS::Control::CryptoModulelId

The CryptoModulelId identifies a crypto module.

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 87

All Rights Reserved

typedef unsigned long CryptoModuleId;

5.1.8 IRSS::Control::CertificateId

The CertificateId identifies a specific certificate within the security subsystem.

typedef unsigned long CertificateId;

5.1.9 IRSS::Control::HashAlgorithmId

The HashAlgorithmId identifies a specific algorithm for generating hashes.

typedef unsigned long HashAlgorithmId;

5.1.10 IRSS::Control::MacAlgorithmId

The MacAlgorithmId identifies a specific algorithm for generating MACs.

typedef unsigned long MacAlgorithmId;

5.1.11 IRSS::Control::SignatureAlgorithmId

The SignatureAlgorithmId identifies a specific algorithm for computing digital signatures.

typedef unsigned long SignatureAlgorithmId;

5.1.12 IRSS::Control::CryptoApplicationIdSequence

The CryptoApplicationIdSequence identifies the ids of one or more crypto applications (e.g.

AES, DES, …). Each sequence element is of type CryptoApplicationId (see 5.1.3).

typedef sequence<CryptoApplicationId> CryptoApplicationIdSequence;

5.1.13 IRSS::Control::CertificateIdSequence

The CertificateIdSequence identifies the ids of the one or more certificates. Each sequence

element is of type CertificateId (see 5.1.8).

typedef sequence<CertificateId> CertificateIdSequence;

5.1.14 IRSS::Infosec::PacketSequence

The PacketSequence consists of one or more packets. Each sequence element is of type

IRSS::Infosec::Packet (see 5.4.3).

typedef sequence<Packet> PacketSequence;

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 88

All Rights Reserved

5.2 Enumerations

5.2.1 IRSS::Control::EndpointId

For specifying Protocol channels with one endpoint, the UNUSED_ENDPOINT_ID is used for

the second endpoint parameter.

Const IRSS::Control::EndpointId UNUSED_ENDPOINT_ID = 0xFFFFFFFF;

5.2.2 IRSS::Control::Duplexity

The Duplexity enumeration defines the four types of directional communication.

enum Duplexity

{

SIMPLEX_TX,

SIMPLEX_RX,

FULL_DUPLEX,

HALF_DUPLEX

};

5.3 Exceptions

5.3.1 IRSS::InvalidChannelId

exception InvalidChannelId { };

Exception Attributes Description Type

InvalidChannelId N/A The channel identifier specified is not a valid

channel identifier

N/A

5.3.2 IRSS:ConfigurationInactive

exception ConfigurationInactive { };

Exception Attributes Description Type

ConfigurationInactive N/A A client attempted to deactivate in inactive

configuration or use a channel without and

active configuration.

N/A

5.3.3 IRSS::Bypass::MaxBypassSizeExceeded

exception MaxBypassSizeExceeded { };

Exception Attributes Description Type

MaxBypassSizeExceeded N/A The maximum bypass size was exceeded N/A

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 89

All Rights Reserved

5.3.4 IRSS::Bypass::PolicyViolation

exception PolicyViolation { };

Exception Attributes Description Type

PolicyViolation N/A The requested operation violates the bypass

policy for the channel.

N/A

5.3.5 IRSS::Control::InvalidCertificateId

exception InvalidCertificateId { };

Exception Attributes Description Type

InvalidCertificateId N/A The certificate ID is not a valid certificate ID N/A

5.3.6 IRSS::Control::ChannelCreationError

exception ChannelCreationError {string reason };

Exception Attributes Description Type

ChannelCreationError reason The channel could not be created (e.g.

cryptographic resources are not available.).

The reason attribute contains the reason for

the channel creation failure.

string

5.3.7 IRSS::Control::ConfigurationActivationError

exception ConfigurationActivationError {string reason };

Exception Attributes Description Type

ConfigurationActivationError reason The configuration could not be activated.

The reason attribute contains the reason

for the activation failure.

string

5.3.8 IRSS::Control::InvalidAlgorithmId

exception InvalidAlgorithmId { };

Exception Attributes Description Type

InvalidAlgorithmId N/A The algorithm specified is not supported or is

not a valid algorithm ID.

N/A

5.3.9 IRSS::Control::InvalidConfiguration

exception InvalidConfiguration { };

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 90

All Rights Reserved

Exception Attributes Description Type

InvalidConfiguration N/A The configuration contains invalid elements

(e.g. invalid key ID) or conflicting elements.

N/A

5.3.10 IRSS::Control::InvalidConfigurationId

exception InvalidConfigurationId { };

Exception Attributes Description Type

InvalidConfigurationId N/A The configuration ID is not a valid

configuration ID

N/A

5.3.11 IRSS::Control::InvalidCryptoApplicationId

exception InvalidCryptoApplicationId { };

Exception Attributes Description Type

InvalidCryptoApplicationId N/A The cryptographic application ID is not

a valid configuration ID

N/A

5.3.12 IRSS::Control::InvalidEndpointId

exception InvalidEndpointId { };

Exception Attributes Description Type

InvalidEndpointId N/A The endpoint ID is not a valid endpoint ID. N/A

5.3.13 IRSS::Control::InvalidEndpointPair

exception InvalidEndpointPair { };

Exception Attributes Description Type

InvalidEndpointPair N/A A channel cannot be created between the

endpoints specified.

N/A

5.3.14 IRSS::Control::InvalidKey

exception InvalidKey { };

Exception Attributes Description Type

InvalidKey N/A The key ID specified is not a valid key ID. N/A

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 91

All Rights Reserved

5.3.15 IRSS::Control::InvalidKeyUpdateAlgorithmId

exception InvalidKeyUpdateAlgorithmId { };

Exception Attributes Description Type

InvalidKeyUpdateAlgorithmId N/A The key update algorithm ID is not a

valid update algorithm ID for this type

of key

N/A

5.3.16 IRSS::Control::InvalidModuleId

exception InvalidModuleId { };

Exception Attributes Description Type

InvalidModuleId N/A The crypto module ID is not a valid crypto

module ID.

N/A

5.3.17 IRSS::Control::KeyUpdateError

exception KeyUpdateError { string reason };

Exception Attributes Description Type

KeyUpdateError reason The key could not be updated. The reason

attribute contains the reason for the key update

failure.

string

5.3.18 IRSS::Control::UnrecognizedCertificate

exception UnrecognizedCertificate { };

Exception Attributes Description Type

UnrecognizedCertificate N/A the certificate data passed was not in the

right format

N/A

5.3.19 IRSS::IandA::InvalidMac

exception InvalidMac { };

Exception Attributes Description Type

InvalidMac N/A The MAC given is not the right size/format. N/A

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 92

All Rights Reserved

5.3.20 IRSS::IandA::InvalidSignature

exception InvalidSignature { };

Exception Attributes Description Type

InvalidSignature N/A The signature given is not the right size/format. N/A

5.3.21 IRSS::IandA::InvalidState

exception InvalidState { };

Exception Attributes Description Type

InvalidState N/A The system is not in the correct state to complete

the operation. For example, data has not yet

been pushed to generate a result.

N/A

5.3.22 IRSS::IandA::MaxDataSizeExceeded

exception MaxDataSizeExceeded { };

Exception Attributes Description Type

MaxDataSizeExceeded N/A A client made an attempt to push data that

exceeded the maximum allowable size.

N/A

5.3.23 IRSS::Infosec::MaxPayloadSizeExceeded

exception MaxPayloadSizeExceeded { };

Exception Attributes Description Type

MaxPayloadSizeExceeded N/A The entire payload exceeded the maximum

payload size.

N/A

5.3.24 IRSS::Infosec::MaxPacketSizeExceeded

exception MaxPacketSizeExceeded { };

Exception Attributes Description Type

MaxPacketSizeExceeded N/A One or more packets exceeded the

maximum packet size.

N/A

5.3.25 IRSS::Infosec::BadSomFlag

exception BadSomFlag { };

Exception Attributes Description Type

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 93

All Rights Reserved

Exception Attributes Description Type

BadSomFlag N/A A packet tagged as SOM was received in the

middle of a previously started message, or a

packet to start a message was received without

the SOM flag set.

N/A

5.3.26 IRSS::Infosec::BadTransecSeed

exception BadTransecSeed { };

Exception Attributes Description Type

BadTransecSeed N/A The seed provided does not contain at least

numSeedBits of seed data or does not contain

the number of seed bits required by the

algorithm.

N/A

5.3.27 IRSS::Protocol::InvalidMessage

exception InvalidMessage { };

Exception Attributes Description Type

InvalidMessage N/A The client passed a message that is

not valid for this protocol or is not

valid at this time.

N/A

5.3.28 IRSS::Protocol::MaxMessageSizeExceeded

exception MaxMessageSizeExceeded { };

Exception Attributes Description Type

MaxMessageSizeExceeded N/A The maximum

message size has

been exceeded.

N/A

5.3.29 IRSS::Protocol::UnrecognizedMessage

exception UnrecognizedMessage { };

Exception Attributes Description Type

UnrecognizedMessage N/A The waveform client passed a

message that is not recognized

by the IRSS.

N/A

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 94

All Rights Reserved

5.4 Structures

5.4.1 IRSS::Control::CryptographicConfiguration

The CryptographicConfiguration structure defines the configuration of the cryptographic

channel.

struct CryptographicConfiguration

{

 IRSS::Control::CryptoApplicationId cryptoApplication;

 IRSS::Control::KeyId tek;

 IRSS::Control::Duplexity duplexity;

 CF::OctetSequence other;

};

Struct Attributes Description Type Valid Range

Cryptographic

Configuration

cryptoApplication A CryptoApplicationId

identifies the cryptographic

application.

See 5.1.3 Platform

dependent

tek Key Identifier of the Traffic

Encryption Key (TEK) to be

used with this configuration.

Some CAs may allow for the

selection of tek on a packet

by packet basis. These CAs

would typically ignore this

attribute and specify the key

as part of metadata contained

within the packet.

See 5.1.4 Platform

dependent

duplexity Duplexity defines the type of

directional communication.

See 5.2.2 Enumeration

See 5.2.2

other (optional) Additional

information needed as

required for the

configuration.

CF::Octet

Sequence

configuration

dependent

5.4.2 IRSS::Control::TransecConfiguration

struct TransecConfiguration

{

 IRSS::Control::CryptoApplicationId cryptoApplication;

 IRSS::Control::KeyId tsk;

 CF::OctetSequence other;

};

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 95

All Rights Reserved

Struct Attributes Description Type Valid Range

TransecConfi

guration

cryptoApplication A CryptoApplicationId

identifies the cryptographic

application.

See 5.1.3 Platform

dependent

tsk Key Identifier of the

TRANSEC (TSK) key to be

used with this configuration.

See 5.1.4 Platform

dependent

other (optional) Additional

information needed as

required for the

configuration.

CF::Octet

Sequence

configuration

dependent

5.4.3 IRSS::Infosec::Packet

struct Packet

{

 CF::OctetSequence payload;

 CF::OctetSequence bypass;

};

Struct Attributes Description Type Valid Range

Packet payload The data that is to be

transformed.

CF::OctetSequence Cryptographic

application

dependent

bypass inline data that is to be

bypassed.

CF::OctetSequence Cryptographic

application

dependent

5.5 Unions

None

Security Work Group - International Radio Security Services API Task Group
IRSS API Specification

WINNF-TS-0011-V1.0.0

Copyright © 2021 The Software Defined Radio Forum Inc. Page 96

All Rights Reserved

Appendix A ACRONYMS

CA Cryptographic Application

CF Core Framework

CSS Cryptographic SubSystem

CT Ciphertext

EOM End of Message

IRSS International Tactical Radio Security Service

IV Initialization Vector

MAC Message Authentication Code

OE Operating Environment

PT Plaintext

SCA Software Communications Architecture

SD Security Domain

SDR Software Defined Radio

SOM Start of Message

TRANSEC TRANsmission SECurity

WF Waveform

